Improved Harris Hawks Optimization Algorithm Based on Cluster Centroid and#br#
Exponential Decline Method#br#
(1. School of Management, Xi’an Polytechnic University, Xi’an 710048, China;
2. Textile Development Research Institute of One Belt and One Road, Xi’an 710048, China;
3. School of Advanced Manufacturing, Fuzhou University, Fuzhou 350003, China)
BAI Xiao-bo, JIANG Meng-xi, WANG Tie-shan, SHAO Jing-feng, LI Bo, . Improved Harris Hawks Optimization Algorithm Based on Cluster Centroid and#br#
Exponential Decline Method#br#[J]. Computer and Modernization, 2023, 0(12): 30-35.
[1] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization: An overview[J]. Swarm Intelligence, 2007,1(1):33-57.
[2] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014,69:46-61.
[3] TAN Y, ZHU Y C. Fireworks algorithm for optimization[C]// Proceedings of the 2010 International Conference in Swarm Intelligence. 2010:355-364.
[4] 刘立群,顾任远. 核中心驱动混合蛙跳算法及其应用[J]. 计算机科学与探索, 2022,16(5):1169-1181.
[5] 宋阿妮,包贤哲,权轶. 基于混沌自适应萤火虫算法的UAVs分配策略[J]. 计算机应用与软件, 2022,39(2):300-306.
[6] 白晓波,邵景峰,王铁山,等. 分段搜索的果蝇算法及其对纺织企业资源配置[J/OL]. 计算机科学与探索:2022,16(10):2330-2344.
[7] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1):67-82.
[8] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: Algorithm and applications[J]. Future Generation Computer Systems, 2019,97:849-872.
[9] 贾鹤鸣,刘庆鑫,刘宇翔,等. 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J/OL]. 智能系统学报,2023,18(01):104-116.
[10] ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al. Aquila optimizer: A novel meta-heuristic optimization algorithm[J]. Computer & Industrial Engineering, 2021,157. DOI: 10.1016/j.cie.2021.107250.
[11] 汤安迪,韩统,徐登武,等. 混沌精英哈里斯鹰优化算法[J]. 计算机应用, 2021,41(8):2265-2272.
[12] 高建瓴,喻明毫. 混合差分进化与二次插值改进哈里斯鹰算法[J/OL]. 小型微型计算机系统,2023,44(7):1352-1359.
[13] 朱诚,潘旭华,张勇. 基于趋化校正的哈里斯鹰优化算法[J]. 计算机应用, 2022,42(4):1186-1193.
[14] 刘小龙,梁彤缨. 基于方形邻域和随机数组的哈里斯鹰优化算法[J/OL]. 控制与决策:1-11[2022-07-31]. DOI: 10.13195/j.kzyjc.2021.0478.
[15] WANG Y H, ZHOU Y Q, LUO Q F. Parameter optimization of shared electric vehicle dispatching model using discrete Harris hawks optimization[J]. Mathematical Biosciences and Engineering, 2022,19(7):7284-7313.
[16] SONG M J, JIA H M, ABUALIGAH L, et al. Modified Harris hawks optimization algorithm with exploration factor and random walk strategy[J]. Computational Intelligence and Neuroscience, 2022,2022. DOI: 10.1155/2022/4673665.
[17] ELGAMAL Z M, YASIN N B M, TUBISHAT M, et al. An improved Harris hawks optimization algorithm with simulated annealing for feature selection in the medical field[J]. IEEE Access, 2020,8:186638-186652.
[18] NANDI A, KAMBOJ V K. A Canis lupus inspired upgraded Harris hawks optimizer for nonlinear, constrained, continuous, and discrete engineering design problem[J]. International Journal for Numerical Methods in Engineering, 2021,122(4):1051-1088.
[19] HUSSIEN A G, AMIN M. A self-adaptive Harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection[J]. International Journal of Machine Learning and Cybernetics, 2022,13(2):309-336.
[20] KAMBOJ V K, NANDI A, BHADORIA A, et al. An intensify Harris hawks optimizer for numerical and engineering optimization problems[J]. Applied Soft Computing, 2020,89. DOI: 10.1016/j.asoc.2019.106018.
[21] KAVEH A, RAHMANI P, ESLAMLOU A D. An efficient hybrid approach based on Harris hawks optimization and imperialist competitive algorithm for structural optimization[J]. Engineering with Computers, 2022,38(S2):1555-1583.
[22] ATASHPAZ-GARGARI E, LUCAS C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition[C]// Proceedings of the 2007 IEEE Congress on Evolutionary Computation. 2007:4661-4667.
[23] GUPTA S, DEEP K, HEIDARI A A, et al. Opposition-based learning Harris hawks optimization with advanced transition rules: Principles and analysis[J]. Expert Systems with Applications, 2020,158. DOI: 10.1016/j.eswa.2020.
113510.
[24] HUANG W N, PENG Y, GE Y, et al. A new Kmeans clustering model and its generalization achieved by joint spectral embedding and rotation[J]. PeerJ Computer Science, 2021,7. DOI: 10.7717/peerj-cs.450.
[25] 陈贵敏,贾建援,韩琪. 粒子群优化算法的惯性权值递减策略研究[J]. 西安交通大学学报, 2006,40(1):53-56.
[26] TAHERI A, RAHIMIZADEH K, RAO R V. An efficient balanced teaching-learning-based optimization algorithm with individual restarting strategy for solving global optimization problems[J]. Information Sciences, 2021,576:68-104.