ZENG Wei-ping, CHEN Jun-hong, Muhammad ASIM, LIU Wen-yin, YANG Zhen-guo. Point Cloud Completion Algorithm Based on Multi-stage Fractal Combination[J]. Computer and Modernization, 2023, 0(12): 24-29.
[1] ZENG Y M, HU Y, LIU S C, et al. RT3D: Real-time 3-D vehicle detection in LiDAR point cloud for autonomous driving[J]. IEEE Robotics and Automation Letters, 2018,3(4):3434-3440.
[2] RAHMAN M M, TAN Y H, XUE J, et al. Recent advances in 3D object detection in the era of deep neural networks: A survey[J]. IEEE Transactions on Image Processing, 2020,29:2947-2962.
[3] HU Q Y, YANG B, XIE L H, et al. RandLA-Net: Efficient semantic segmentation of large-scale point clouds[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:11105-11114.
[4] HAN X F, LAGA H, BENNAMOUN M. Image-based 3D object reconstruction: State-of-the-art and trends in the deep learning era[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(5):1578-1604.
[5] HU W, FU Z Q, GUO Z M. Local frequency interpretation and non-local self-similarity on graph for point cloud inpainting[J]. IEEE Transactions on Image Processing, 2019,28(8):4087-4100.
[6] MARTINOVIC A, GOOL L V. Bayesian grammar learning for inverse procedural modeling[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013:201-208.
[7] YUAN W T, KHOT T, HELD D, et al. PCN: Point completion network[C]// 2018 International Conference on 3D Vision (3DV). 2018:728-737.
[8] HUANG Z T, YU Y K, XU J W, et al. PF-Net: Point fractal network for 3D point cloud completion[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:7659-7667.
[9] YU X M, RAO Y M, WANG Z Y, et al. PoinTr: Diverse point cloud completion with geometry-aware transformers.[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021: 12478-12487.
[10] YI L, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016,35(6). DOI:10.1145/2980179.2980238
[11] HAN Z Z, LIU Z B, HAN J W, et al. Mesh convolutional restricted Boltzmann machines for unsupervised learning of features with structure preservation on 3-D meshes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017,28(10):2268-2281.
[12] LIU X H, HAN Z Z, LIU Y S, et al. Point2Sequence: Learning the shape representation of 3D point clouds with an attention-based sequence to sequence network[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(1):8778-8785.
[13] HAN Z Z, LIU Z B, VONG C M, et al. BoSCC: Bag of spatial context correlations for spatially enhanced 3D shape representation[J]. IEEE Transactions on Image Processing, 2017,26(8): 3707-3720.
[14] HAN Z Z, LIU X H, LIU Y S, et al. Parts4Feature: Learning 3D global features from generally semantic parts in multiple views[J]. arXiv preprint arXiv:1905.07506, 2019.
[15] WANG Y, SOLOMON J. Deep closest point: Learning representations for point cloud registration[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:3522-3531.
[16] HAN Z Z, SHANG M Y, LIU Y S, et al. View Inter-prediction GAN: Unsupervised representation learning for 3D shapes by learning global shape memories to support local view predictions[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(1):8376-8384.
[17] HAN Z Z, LIU H L, LIU Z B, et al. 3D2SeqViews: Aggregating sequential views for 3D global feature learning by CNN with hierarchical attention aggregation[J]. IEEE Transactions on Image Processing, 2019,28(8):3986-3999.
[18] LAWIN F J, DANELLJAN M, TOSTEBERG P, et al. Deep projective 3D semantic segmentation[C]// International Conference on Computer Analysis of Images and Patterns. 2017:95-107.
[19]BEN-SHABAT Y, LINDENBAUM M, FISCHER A. 3DmFV: Three-dimensional point cloud classification in real-time using convolutional neural networks.[J]. IEEE Robotics and Automation Letters, 2018,3(4):3145-3152.
[20] CHARLES R Q, SU H, KAICHUN M, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:77-85.
[21] QI C R, YI L, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:5105-5114.
[22] YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: Point cloud auto-encoder via deep grid deformation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:206-215.
[23] ZHANG J Z, CHEN X Y, CAI Z G, et al. Unsupervised 3D shape completion through GAN inversion[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021:1768-1777.
[24] BARSOUM E, KENDER JOHN, LIU Z C. HP-GAN: Probabilistic 3D human motion prediction via GAN[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018:1499-1508.
[25] ZHANG X C, FENG Y T, LI S Q, et al. View-guided point cloud completion[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021:15885-15894.
[26] WOLF T, DEBUT L, SANH V, et al. Transformers: State-of-the-art natural language processing[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2020:38-45.
[27] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphic, 2019,38(5). DOI: 10.1145/3326362.
[28] FAN H Q, SU H, GUIBAS L J. A point set generation network for 3D object reconstruction from a single image[J]. arXiv preprint arXiv:1612.00603v2, 2016.