Computer and Modernization ›› 2022, Vol. 0 ›› Issue (09): 51-59.
Previous Articles Next Articles
Online:
2022-09-22
Published:
2022-09-22
LI Yi, WEI Jian-guo, LIU Guan-wei. Survey of Model Pruning Algorithms[J]. Computer and Modernization, 2022, 0(09): 51-59.
[1] HAN S, MAO H Z, DALLY W J. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding[C]// Proceedings of International Conference on Learning Representation. 2016. [2] DENIL M, SHAKIBI B, DINH L, et al. Prediction parameters in deep learning[C]// Proceedings of Advances in Neural Information Processing Systems. 2013:2148-2156. [3] CUN Y L, DENKER J S, SOLLA S A. Optimal brain damage[C]// Proceedings of Advances in Neural Information Processing Systems. 1990:589-605. [4] HASSIBI B, STORK D G. Second order derivatives for network pruning: Optimal brain surgeon[C]// Proceedings of Advances in Neural Information Processing Systems. 1992:164-171. [5] HAN S, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural networks[C]// Proceedings of Advances in Neural Information Processing Systems. 2015:1135-1143. [6] LIU Z, SUN M J, ZHOU T H, et al. Rethinking the value of network pruning[C]// Proceedings of International Conference on Learning Representation. 2019. [7] MITTAL D, BHARDWAJ S, KHAPRA M M, et al. Recovering from random pruning: On the plasticity of deep convolutional neural networks[C]// Proceedings of IEEE Winter Conference on Applications of Computer Vision. 2018:848-857. [8] WANG Y L, ZHANG X L, XIE L X, et al. Pruning from scratch[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020:12273-12280. [9] MANESSI F, ROZZA A, BIANCO S, et al. Automated pruning for deep neural network compress[C]// Proceedings of International Conference on Pattern Recognition. 2018: 654-657. [10]CARREIRA-PERPINAN M A, IDELBAYEV Y. Learning-compression algorithm for neural network pruning[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:8532-8541. [11]LIN M B, JI R R, ZHANG Y X, et al. Channel pruning via automatic structure search[C]// Proceedings of International Joint Conference on Artificial Intelligence. 2020:673-679. [12]LIU Z H, MU H Y, ZHANG X Y, et al. Meta learning for automatic neural network channel pruning[C]// Proceedings of IEEE International Conference on Computer Vision. 2019:3295-3304. [13]HE Y H, LIN J, LIU Z J, et al. AMC: AutoML or model compression and acceleration on mobile devices[C]// Proceedings of European Conference on Computer Vision. 2018:784-800. [14]LIN S H, JI R R, YAN C Q, et al. Towards optimal structured CNN pruning via generative adversarial learning[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:2790-2799. [15]NING X F, ZHAO T C, LI W S, et al. DSA: More efficient budgeted pruning via differentiable sparsity allocation[C]// Proceedings of European Conference on Computer Vision. 2020:592-607. [16]GUO S P, WANG Y J, LI Q Q, et al. DMCP: Differentiable Markov channel pruning for neural networks[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:1536-1544. [17]LI Y W, GU S H, MAYER C, et al. Group sparsity: The hinge between filter pruning and decomposition for network compression[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:8018-8027. [18]WANG T Z, WANG K, CAI H, et al. APQ: Joint search for network architecture, pruning and quantization policy[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:2078-2087. [19]TUNG F, MORI G. CLIP-Q: Deep network compression learning by in-parallel pruning-quantization[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7873-7882. [20]DELLINGER F, BOULAY T, BARRENECHEA D M, et al. Multi-task network pruning and embedded optimization for real-time deployment in ADAS[J]. arXiv preprint arXiv:2102.07831, 2021. [21]HE W, WU M Q, LIANG M F, et al. CAP: Context-aware pruning for semantic segmentation[C]// Proceedings of the IEEE Winter Conference on Applications of Computer Vision. 2021:960-969. [22]MENG F X, CHENG H, LI K, et al. Pruning filter in filter[C]// Proceedings of Advances in Neural Information Processing Systems. 2020:17629-17640. [23]MAO H Z, HAN S, POOL J, et al. Exploring the regularity of sparse structure in convolutional neural network[J]. arXiv preprint arXiv:1705.08922, 2017. [24]LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient ConvNets[C]// Proceedings of International Conference on Learning Representation. 2017. [25]HE Y, LIU P, WANG Z W, et al. Filter pruning via geometric median for deep convolutional neural network acceleration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:4340-4349. [26]WEN W, WU C P, WANG Y D, et al. Learning structured sparsity in deep neural networks[C]// Proceedings of Advances in Neural Information Processing Systems. 2016:2074-2082. [27]LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]// Proceedings of IEEE International Conference on Computer Vision. 2017:2736-2744. [28]HU H Y, PENG R, TAI Y W, et al. Network trimming: A data-driven neuron pruning approach towards efficient deep architectures[J]. arXiv preprint arXiv:1607.03250, 2016. [29]LIN M B, JI R R, WANG Y, et al. Filter pruning using high-rank feature map[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:1529-1538. [30]LUO J H, WU J X. An entropy-based pruning method for CNN compression[J]. arXiv preprint arXiv:1706.05791, 2017. [31]MOLCHANOV P, TYREE S, KARRAS T, et al. Pruning convolutional neural networks for resource efficient transfer learning[C]// Proceedings of International Conference on Learning Representation. 2017. [32]XIN D, CHEN S Y, PAN S. Learning to prune deep neural networks via layer-wise optimal brain surgeon[C]// Proceedings of Advances in Neural Information Processing Systems. 2017:4857-4867. [33]YOU Z H, YAN K, YE J M, et al. Gate decorator: Global filter pruning method for accelerating deep convolutional neural networks[C]// Proceedings of Advances in Neural Information Processing Systems. 2019:2133-2144. [34]LUO J H, WU J X, LIN W Y. ThiNet: A filter level pruning method for deep neural network compression[C]// Proceedings of IEEE International Conference on Computer Vision. 2017:5058-5066. [35]HE Y H, ZHANG X Y, SUN J. Channel pruning for accelerating very deep neural networks[C]// Proceedings of IEEE International Conference on Computer Vision. 2017:1389-1397. [36]KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Technical Report, 2005. [37]LI Y W, GU S H, ZHANG K, et al. DHP: Differentiable meta pruning via hypernetworks[C]// Proceedings of European Conference on Computer Vision. 2020:608-624. [38]HE Y, KANG G L, DONG X Y, et al. Soft filter pruning for accelerating deep convolutional neural networks[C]// Proceedings of International Joint Conference on Artificial Intelligence. 2018:2234-2240. [39]LIN M B, JI R R, LI S J, et al. Filter sketch for network pruning[J]. arXiv preprint arXiv:2001.08514, 2020. [40]LIBERTY E. Simple and deterministic matrix sketching[C]// Proceeding of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2013:581-588. [41]GUO Y W, YAO A B, CHEN Y R. Dynamic network surgery for efficient DNNs[C]// Proceedings of Advances in Neural Information Processing Systems. 2016:1379-1387. [42]ZHU M H, GUPTA S. To prune, or not to prune: Exploring the efficacy of pruning for model compression[C]// Proceedings of International Conference on Learning Representations. 2018. [43]LUO J H, WU J X. An end-to-end trainable filter pruning method for efficient deep model inference[J]. arXiv preprint arXiv:1805.08941, 2020. [44]FRANKE J, CARBIN M. The lottery ticket hypothesis: Finding sparse, trainable neural networks[J]. arXiv preprint arXiv:1803.03635, 2018. [45]ZHOU H, LAN J, LIU R, et al. Deconstruction lottery tickets: Zeros, signs, and the super-mask[C]// Proceedings of Advances in Neural Information Processing Systems. 2019:3597-3607. [46]RAMANUJAN V, WORTSMAN M, KEMBHAVI A, et al. What’s hidden in a randomly weighted neural network[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:11893-11902. [47]MALACH E, YEHUDAI G, SHALEV-SHWARTZ S, et al. Proving the lottery ticket hypothesis: Pruning is all you need[C]// Proceedings of International Conference on Machine Learning. 2020:6682-6691. [48]QIAN X, KLABJAN D. A probabilistic approach to neural network pruning[J]. arXiv preprint arXiv:2105.10065v1, 2021. [49]WANG Y, LU Y D, BLANKEVOORT T. Differentiable joint pruning and quantization for hardware efficiency[C]// Proceedings of European Conference on Computer Vision. 2020:259-277. [50]DAI B, ZHU C, WIPF D. Compressing neural networks using the variational information bottleneck[C]// Proceedings of International Conference on Machine Learning. 2018:1135-1144. [51]GUO J Y, OUYANG W L, XU D. Multi-dimensional pruning: A unified framework for model compression[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:1508-1517. |
[1] | HUANG Tingpei1, MA Lubiao1, LI Shibao2, LIU Jianhang1. Gesture Recognition Method Based on WiFi and Prototypical Network [J]. Computer and Modernization, 2024, 0(12): 34-39. |
[2] | QI Xian, LIU Daming, CHANG Jiaxin. Multi-view 3D Reconstruction Based on Improved Self-attention Mechanism [J]. Computer and Modernization, 2024, 0(11): 106-112. |
[3] | CHEN Kai1, LI Yiting1, 2, QUAN Huafeng1. A River Discarded Bottles Detection Method Based on Improved YOLOv8 [J]. Computer and Modernization, 2024, 0(11): 113-120. |
[4] | YANG Jun1, HU Wei1, ZHU Wenfu2. Visual SLAM Loop Closure Detection Algorithm Based on Improved MobileNetV3 [J]. Computer and Modernization, 2024, 0(10): 21-26. |
[5] | WANG Yingying, HAO Xiao. Fine-grained Image Classification Based on Res2Net and Recursive Gated Convolution [J]. Computer and Modernization, 2024, 0(10): 74-79. |
[6] | SHI Xingyu1, LI Qiang2, ZHUANG Li3, LIANG Yi3, WANG Qiulin3, CHEN Kai3, WU Chenzhou3, CHANG Sheng1. Object Detection Models Distillation Technique for Industrial Deployment [J]. Computer and Modernization, 2024, 0(10): 93-99. |
[7] | ZHANG Ze1, ZHANG Jianquan2, 3, ZHOU Guopeng2, 3. Camera Module Defect Detection Based on Improved YOLOv8s [J]. Computer and Modernization, 2024, 0(09): 107-113. |
[8] | CHENG Yazi1, LEI Liang1, 2, CHEN Han1, ZHAO Yiran1. Multi-scale Depth Fusion Monocular Depth Estimation Based on Transposed Attention [J]. Computer and Modernization, 2024, 0(09): 121-126. |
[9] | CHENG Meng, LI Hao. Improved Deciduous Tree Nest Detection Method Based on YOLOv5s [J]. Computer and Modernization, 2024, 0(08): 24-29. |
[10] | WANG Mengxi, LI Jun. Review of Fall Detection Technologies for Elderly [J]. Computer and Modernization, 2024, 0(08): 30-36. |
[11] | SHI Xianwei1, FAN Xin2. Semantic Segmentation of Video Frame Scene Based on Lightweight [J]. Computer and Modernization, 2024, 0(08): 49-53. |
[12] | XU Xin’ai, LI Gang. An Image Generation Method of Classroom Expression Images [J]. Computer and Modernization, 2024, 0(08): 88-91. |
[13] | GAO Shuaipeng, WANG Yifan. Survey on Group-level Emotion Recognition in Images [J]. Computer and Modernization, 2024, 0(08): 98-107. |
[14] | HUANG Wendong, WANG Yifan. Survey on Multimodal Information Processing and Fusion Based on Modal Categories [J]. Computer and Modernization, 2024, 0(07): 47-62. |
[15] | WU Li1, ZHANG Zhenghao2, GE Caicheng2, YU Jun2. Lane Line Detection Algorithm Based on Improved SCNN Network [J]. Computer and Modernization, 2024, 0(07): 87-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||