Computer and Modernization ›› 2021, Vol. 0 ›› Issue (06): 74-85.
Previous Articles Next Articles
Online:
2021-07-05
Published:
2021-07-05
CHEN Si-yu, ZHUANG Yi, LI Jing. Multi Feature Load Forecasting Model for LSTM Network in Mobile Cloud Computing[J]. Computer and Modernization, 2021, 0(06): 74-85.
[1] QIAN L, LUO Z G, DU Y J, et al. Cloud computing: An overview[C]// Proceedings of the 1st International Conference on Cloud Computing(CloudCom’09). 2009:626-631. [2] 罗军舟,吴文甲,杨明. 移动互联网:终端、网络与服务[J]. 计算机学报, 2011,34(11):2029-2051. [3] DINH H T, LEE C, NIYATO D, et al. A survey of mobile cloud computing: Architecture, applications, and approaches[J]. Wireless Communications and Mobile Computing, 2013,13(18):1587-1611. [4] LEE D E, CHAPMAN D, HENDERSON N, et al. Multilevel vector autoregressive prediction of sea surface temperature in the North Tropical Atlantic Ocean and the Caribbean Sea[J]. Climate Dynamics, 2016,47(1-2):95-106. [5] NAZARIPOUYA H, WANG Y B, CHU C C, et al. Univariate time series prediction of solar power using a hybrid wavelet-ARMA-NARX prediction method[C]// 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). IEEE, 2016:DOI:10.1109/TDC.2016.7519959. [6] GUO M, GUAN Q S, KE W D. Optimal scheduling of VMs in queueing cloud computing systems with a heterogeneous workload[J]. IEEE Access, 2018,6:15178-15191. [7] DI S, KONDO D, CIRNE W. Host load prediction in a Google compute cloud with a Bayesian model[C]// Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE, 2012:DOI:10.1109/SC.2012.68. [8] TONG J J, HAI-HONG E, SONG M N, et al. Host load prediction in cloud based on classification methods[J]. The Journal of China Universities of Posts and Telecommunications, 2014,21(4):40-46. [9] CETINSKI K, JURIC M B. AME-WPC: Advanced model for efficient workload prediction in the cloud[J]. Journal of Network and Computer Applications, 2015,55:191-201. [10]KUMAR A S, MAZUMDAR S. Forecasting HPC workload using ARMA models and SSA[C]// International Conference on Information Technology. IEEE, 2016:DOI:10.1109/ICIT.2016.065. [11]DINDA P A. Design, implementation, and performance of an extensible toolkit for resource prediction in distributed systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2006,17(2):160-173. [12]ASGHARI S, NAVIMIPOUR N J. Nature inspired meta-heuristic algorithms for solving the service composition problem in the cloud environments[J]. International Journal of Communication Systems, 2018,31(12):e3708.1-e3708.27. [13]ZHONG W, ZHUANG Y, SUN J, et al. A load prediction model for cloud computing using PSO-based weighted wavelet support vector machine[J]. Applied Intelligence, 2018,48(11):4072-4083. [14]BEY K B, BENHAMMADI F, GESSOUM Z, et al. CPU load prediction using neuro-fuzzy and Bayesian inferences[J]. Neurocomputing, 2011,74(10):1606-1616. [15]YANG Q P, ZHOU Y, YU Y, et al. Multi-step-ahead host load prediction using autoencoder and echo state networks in cloud computing[J]. The Journal of Supercomputing, 2015,71(8):3037-3053. [16]ZHANG W S, LI B, ZHAO D H, et al. Workload prediction for cloud cluster using a recurrent neural network[C]// International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI). IEEE, 2016:104-109. [17]SONG B B, YU Y, ZHOU Y, et al. Host load prediction with long short-term memory in cloud computing[J]. The Journal of Supercomputing, 2017,74(12): DOI: 10.1007/s11227-017-2044-4. [18]BI J, ZHANG L B, YUAN H T, et al. Hybrid task prediction based on wavelet decomposition and ARIMA model in cloud data center[C]// 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2018:DOI:10.1109/ICNSC. 2018.8361342. [19]MASON K, DUGGAN M, BARRETT E, et al. Predicting host CPU utilization in the cloud using evolutionary neural networks[J]. Future Generation Computer Systems, 2018,86:162-173. [20]IQBAL W, BERRAL J L, ERRADI A, et al. Adaptive prediction models for data center resources utilization estimation[J]. IEEE Transactions on Network and Service Management, 2019,16(4):1681-1693. [21]SHAIFU G, DILEEP A D, GONSALVES T A. A joint feature selection framework for multivariate resource usage prediction in cloud servers using stability and prediction performance[J]. The Journal of Supercomputing, 2018,74:6033-6068. [22]DANNECKER L. Energy Time Series Forecasting: Efficient and Accurate Forecasting of Evolving Time Series from the Energy Domain[M]. Springer, 2015. [23]YE J, XIAO C, ESTEVES R M, et al. Time series similarity evaluation based on spearman’s correlation coefficients and distance measures[C]// Proceeding of the 2nd International Conference on Cloud Computing and Big Data in Asia. Springer, 2015:319-331. [24]RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011,334(6062):1518-1524. [25]程启月. 评测指标权重确定的结构熵权法[J]. 系统工程理论与实践, 2010,30(7):1225-1228. [26]FANG L Y, ZHAO H, WANG P, et al. Feature selection method based on mutual information and class separability for dimension reduction in multidimensional time series for clinical data[J]. Biomedical Signal Processing & Control, 2015,21:82-89. [27]田中大,李树江,王艳红,等. 基于小波变换的风电场短期风速组合预测[J]. 电工技术学报, 2015,30(9):112-120. [28]RENAUD O, STARCK J L, MURTAGH F. Prediction based on a multiscale decomposition[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2003,1(2):217-232. [29]MIKOLOV T, KARAFIT M, BURGET L, et al. Recurrent neural network based language model[C]// Proceedings of INTERSPEECH. 2010:1045-1048. [30]SAK H, SENIOR A W, BEAUFAYS F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[J]. Neural and Evolutionary Computing, arXiv:1402.1128. [31]LE Q V, JAITLY N, HINTON G E. A simple way to initialize recurrent networks of rectified linear units[J]. arXiv preprint arXiv:1504.00941, 2015. [32]NGUYEN H M, KALRA G, KIM D. Host load prediction in cloud computing using long short-term memory encoder-decoder[J]. The Journal of Supercomputing, 2019,75(11):7592-7605. [33]ABDEL-NASSER M, MAHMOUD K. Accurate photovoltaic power forecasting models using deep LSTM-RNN[J]. Neural Computing & Applications, 2019,31(7):2727-2740. [34]ZHONG W, ZHUANG Y, SUN J, et al. A load prediction model for cloud computing using PSO-based weighted wavelet support vector machine[J]. Applied Intelligence, 2018,48(11):4072-4083. [35]LAI G K, CHANG W C, YANG Y M, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]// The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018:95-104. [36]MANDELBROT B. The Fractal Geometry of Nature[M]. W.H. Freeman and Co., 1983. |
[1] | ZHANG Xiaodong1, BAI Guangzhi1, LI Min1, LI Haoyang2. Oil and Gas Well Production Prediction Model Based on Empirical Wavelet Transform [J]. Computer and Modernization, 2024, 0(12): 53-58. |
[2] | SU Kaixuan . Network Intrusion Detection Based on Improved XGBoost Model [J]. Computer and Modernization, 2024, 0(06): 109-114. |
[3] | LUO Shuhuan, SUN Wu, YOU Jie, WANG Wei, HU Biwei, JIANG Nan. Non-destructive Detection of Total Acid Content in Pear Based on#br# Visible-near Infrared Spectroscopy [J]. Computer and Modernization, 2024, 0(05): 80-84. |
[4] | ZHOU Cheng-cheng, ZENG Qing-jun, YANG Kang, HU Jia-ming, HAN Chun-wei. EEG Recognition of Motor Imagination Based on Efficiency Channel Attention Module [J]. Computer and Modernization, 2023, 0(12): 19-23. |
[5] | XU Kang-jian, GONG Hong-ning, LI Can, TONG De-yu. SVR-based Image Watermarking Algorithm with Adaptive Embedding Intensity [J]. Computer and Modernization, 2023, 0(03): 38-42. |
[6] | WANG Yang, CHEN Mei, LI Hui. FOCoR: A Course Recommendation Approach Based on Feature Selection Optimization [J]. Computer and Modernization, 2022, 0(10): 1-7. |
[7] | ZHAO Ying-li, ZHU Xu. Association Analysis of Image Genetic Data Based on Group Sparse Joint Leraning [J]. Computer and Modernization, 2022, 0(08): 43-49. |
[8] | YIN Chun-jie, XIAO Fa-da, LI Peng-fei, ZHAO Qin. Short-term Load Forecasting of Regional Microgrid Based on LSTM Neural Network [J]. Computer and Modernization, 2022, 0(04): 7-11. |
[9] | MO Yun. EEG Decoding Method Based on Hybrid Feature Selection [J]. Computer and Modernization, 2022, 0(04): 92-96. |
[10] | LI Yu-bin, YU Tao. Phase Partition of Batch Process Based on Instantaneous Frequency Response Function [J]. Computer and Modernization, 2022, 0(02): 65-69. |
[11] | ZHAO Yan-ping, WANG Fang, XIA Yang. Short Text Classification Method Based on Support Vector Machine [J]. Computer and Modernization, 2022, 0(02): 92-96. |
[12] | ZHAO Cong-hui, FENG Qing-sheng. Rotation Invariant Texture Extraction of Wheel Tread Based on DT-CWT and SVM [J]. Computer and Modernization, 2021, 0(12): 85-90. |
[13] | ZHANG Dong-fang, CHEN Hai-yan, YUAN Li-gang. S2R2: Semi-supervised Feature Selection Based on Analysis of Relevance and Redundancy [J]. Computer and Modernization, 2021, 0(09): 113-120. |
[14] | DAI Ji-peng, SHAO Feng-jing, SUN Ren-cheng. Short Text Classification Based on Improved CHI and TF-IDF [J]. Computer and Modernization, 2021, 0(06): 6-11. |
[15] | LIANG Xin, ZHANG Zhu-hong, . Research on Depth of Oil Well Moving Liquid Surface Based on Short-term Energy and LSTM [J]. Computer and Modernization, 2021, 0(04): 15-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||