[1] VAN ETTEN A. You only look twice: Rapid multi-scale object detection in satellite imagery[DB/OL]. (2018-03-24)[2019-12-01]. https://arxiv.org/pdf/1805.09512.pdf.
[2] 郑胤,陈权崎,章毓晋. 深度学习及其在目标和行为识别中的新进展[J]. 中国图象图形学报, 2014,19(2):175-184.
[3] 曹林林,李海涛,韩颜顺,等. 卷积神经网络在高分遥感影像分类中的应用[J]. 测绘科学, 2016,41(9):170-175.
[4] 王金传,谭喜成,王召海,等. 基于Faster R-CNN深度网络的遥感影像目标识别方法研究[J]. 地球信息科学学报, 2018,20(10):1500-1508.
[5] YAO X K, WAN L H, HOU H, et al. Airplane object detection in high resolution remote sensing imagery based on multi-structure convolutional neural network[J]. Computer Engineering, 2017,43(1):259-267.
[6] 徐逸之,姚晓婧,李祥,等. 基于全卷积网络的高分辨遥感影像目标检测[J]. 测绘通报, 2018(1):77-82.
[7] ZOU Z X, SHI Z W. Ship detection in spaceborne optical image with SVD networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(10):5832-5845.
[8] LI Q P, MOU L C, JIANG K Y, et al. Hierarchical region based convolution neural network for multiscale object detection in remote sensing images[C]// 2018 IEEE International Geoscience and Remote Sensing Symposium. 2018:4355-4358.
[9] XIE H N, WANG T, QIAO M N, et al. Robust object detection for tiny and dense targets in VHR aerial images[C]// 2017 Chinese Automation Congress. 2017:6397-6401.
[10]ZHANG W, WANG S H, THACHAN S, et al. Deconv R-CNN for small object detection on remote sensing images[C]// 2018 IEEE International Geoscience and Remote Sensing Symposium. 2018:2483-2486.
[11]FU Y M, WU F G, ZHAO J S. Context-aware and depthwise-based detection on orbit for remote sensing image[C]// 2018 24th International Conference on Pattern Recognition. 2018:1725-1730.
[12]姚远,姜志国,张浩鹏. 基于层次化分类器的遥感图像飞机目标检测[J]. 航天返回与遥感, 2014,35(5):88-94.
[13]张宇,何楚,石博,等. 逐层特征选择的多层部件模型用于遥感图像飞机目标检测[J]. 武汉大学学报(信息科学版), 2014,39(12):1406-1411.
[14]ROSTEN E, PORTER R, DRUMMOND T. Faster and better: A machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(1):105-119.
[15]杨华,苏航,郑世宝. 大规模群体密度估计算法[J]. 电视技术, 2010,34(5):113-116.
[16]PANDEY M, LAZEBNIK S. Scene recognition and weakly supervised object localization with deformable part-based models[C]// 2011 International Conference on Computer Vision. 2011:1307-1314.
[17]AZIZPOUR H, LAPTEV I. Object detection using strongly-supervised deformable part models[C]// Proceedings of European Conference on Computer Vision. 2012:836-849.
[18]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[19]GIRSHICKR. Fast R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. 2015:1440-1448.
[20]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015:91-99.
[21]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[22]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. 2016:21-37.
[23]CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the Devil in the Details: Delving Deep into Convolutional Nets[DB/OL].(2014-11-05)[2019-12-01]. https://arxiv.org/abs/1405.3531.
[24]HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
[25]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[26]WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision. 2018:3-19.
[27]LIN M,CHEN Q,YAN S C. Network in network[DB/OL]. (2014-03-04)[2019-12-01]. https://arxiv.org/abs/1312.4400.
[28]YU F, KOLTUN V. Multi-scale Context Aggregation by Dilated Convolutions[DB/OL]. (2016-04-30)[2019-12-01]. https://arxiv.org/abs/1511.07122.
[29]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. 2017:2999-3007.
[30]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[DB/OL]. (2015-05-02)[2019-12-01]. https://arxiv.org/abs/1502.03167.
|