[1] CRUM W R, HARTKENS T, HILL D L G. Non-rigid image registration: Theory and practice[J]. The British Journal of Radiology, 2004,77(suppl_2):S140-S153.
[2] LIEBMANN F, VON ATZIGEN M, STUTZ D, et al. Automatic registration with continuous pose updates for marker-less surgical navigation in spine surgery[J]. Medical Image Analysis, 2024,91. DOI: 10.1016/j.media.2023.103027.
[3] NOOR M B T, ZENIA N Z, KAISER M S, et al. Application of deep learning in detecting neurological disorders from magnetic resonance images: A survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia[J]. Brain Informatics, 2020,7: Article number 11.
[4] CHEN J Y, LIU Y H, WEI S W, et al. A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond[J]. Medical Image Analysis, 2025,100. DOI: 10.1016/j.media.2024.103385.
[5] VERCAUTEREN T, PENNEC X, PERCHANT A, et al. Diffeomorphic demons: Efficient non-parametric image registration[J]. Academic Press, 2009,45(Suppl1):S61-S72.
[6] AVANTS B B, TUSTISON N J, SONG G, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration[J]. Neuroimage, 2011,54(3):2033-2044.
[7] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer,2015:234-241.
[8] JOSHI A, HONG Y. R2Net: Efficient and flexible diffeomorphic image registration using Lipschitz continuous residual networks[J]. Medical Image Analysis, 2023,89. DOI: 10.1016/j.media.2023.102917.
[9] ZHAO S Y, DONG Y, CHANG E I C, et al. Recursive cascaded networks for unsupervised medical image registration[C]// 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2020:10600-10610.
[10] BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: A learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019,38(8):1788-1800.
[11] BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. An unsupervised learning model for deformable medical image registration[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:9252-9260.
[12] MOK T C W, CHUNG A C S. Fast symmetric diffeomorphic image registration with convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020:4644-4653.
[13] KIM B, KIM D H, PARK S H, et al. CycleMorph: Cycle consistent unsupervised deformable image registration[J]. Medical Image Analysis, 2021,71(1). DOI: 10.1016/j.media.2021.102036.
[14] JIA X, THORLEY A, CHEN W, et al. Learning a model-driven variational network for deformable image registration[J]. IEEE Transactions on Medical Imaging, 2022,41(1):199-212.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv preprint arXiv:1706.03762, 2017.
[16] CHEN J J, FREY E C, HE Y F, et al. TransMorph: Transformer for unsupervised medical image registration[J]. Medical Image Analysis, 2022,82:102615.
[17] CHEN J J, HE Y F, FREY E C, et al. ViT-V-Net: Vision Transformer for unsupervised volumetric medical image registration[J]. arXiv preprint arXiv:2104.06468, 2021.
[18] CHEN Z Y, ZHENG Y J, JAMES C G. TransMatch: A Transformer-based multilevel dual-stream feature matching network for unsupervised deformable image registration[J]. IEEE Transactions on Medical Imaging, 2024,43(1):15-27.
[19] GHAHREMANI M, KHATERI M, JIAN B, ET AL. H-ViT: A hierarchical vision Transformer for deformable image registration[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2024:11513-11523.
[20] CHEN J S, LU D H, ZHANG Y, et al. Deformer: Towards displacement field learning for unsupervised medical image registration[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2022:141-151.
[21] ZHU Y P, LU S. Swin-VoxelMorph: A symmetric unsupervised learning model fordeformable medical image registration using Swin Transformer[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2022:78-87.
[22] 石磊,籍庆余,陈清威,等.视觉Transformer在医学图像分析中的应用研究综述[J]. 计算机工程与应用, 2023, 59(8):41-55.
[23] DE VOS B D, BERENDSEN F F, VIERGEVER M A, et al. End-to-end unsupervised deformable image registration with a convolutional neural network[C]// International Workshop on Deep Learning in Medical Image Analysis. Springer, 2017:204-212.
[24] KANG M, HU X J, HUANG W L, et al. Dual-stream pyramid registration network[J]. Medical Image Analysis, 2022,78:102379.
[25] 程天琪,王雷,郭新萍,等. LK-CAUNet:基于交叉注意的大内核多尺度可变形医学图像配准网络[J]. 浙江大学学报(理学版), 2023,50(6):745-753.
[26] SONG X R, CHAO H Q, XU X A, et al. Cross-modal attention for multi-modal image registration[J]. Medical Image Analysis, 2022,82:102612-102612.
[27] SHI J C, HE Y T, KONG Y Y, et al. XMorpher: Full Transformer for deformable medical image registration via cross attention[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2022:217-226.
[28] LI Y, CHEN Y, WANG T, et al. Tokens-to-Token ViT: Training Vision Transformers from scratch on ImageNet[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:558-567.
[29] WU H P, XIAO B, CODELLA N, et al. CvT: Introducing convolutions to Vision Transformers[C]// 2021 IEEE/CVF International Conference on Computer Vision(ICCV). IEEE, 2021:22-31.
[30] MARCUS D S, WANG T H, PARKER J, et al. Open access series of imaging studies: Longitudinal MRI data in nondemented and demented older adults[J]. Journal of Cognitive Neuroscience, 2007,19(9):1498-1507.
[31] GOLLUB R L, SHOEMAKER J M, KING M D, et al. The MCIC collection:A shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia[J]. Neuroinformatics, 2013,11(3):367-388.
[32] HEINRICH M P, JENKINSON M, BHUSHAN M, et al. MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration[J]. Medical Image Analysis, 2012,16(7):1423-1435.
[33] AVANTS B B, EPSTEIN C L, GROSSMAN M, et al. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain[J]. Medical Image Analysis, 2008,12(1):26-41.