LI Yan, MAO Jiaming, WANG Ziying, GU Zhimin, JIANG Haitao. Anomalous Event Prediction Approach Using Graph Neural Network[J]. Computer and Modernization, 2025, 0(08): 39-47.
[1] 廖湘科,李姗姗,董威,等. 大规模软件系统日志研究综述[J]. 软件学报,2016,27(8):1934-1947.
[2] 高剑刚,郑岩,于康,等. 神威超级计算机运行时故障定位方法[J]. 计算机研究与发展, 2024,61(1):86-97.
[3] 陈旭,张硕,景永俊,等. TRGATLog:基于日志时间图注意力网络的日志异常检测方法[J]. 计算机应用研究, 2024,41(4):1034-1040.
[4] 刘亚,林明洁,曲博. 图表示学习在网络安全领域的应用研究综述[J]. 小型微型计算机系统, 2023,44(3):616-628.
[5] 王博,华庆一,南亚会,等. 一种复杂微服务系统异常行为分析与定位算法[J]. 西安邮电大学学报, 2023,28(1):85-91.
[6] 张磊,张洪德,李进珍. 用于神经网络异常检测模型的日志处理方法研究[J]. 网络安全技术与应用, 2024(3):34-37.
[7] 程思强,李晓戈,李显亮. 基于日志多特征融合的无监督异常检测算法[J]. 小型微型计算机系统, 2023,44(12):2727-2733.
[8] OPERA A, LI Z, YEN T F, et al. Detection of early-stage enterprise infection by mining large-scale log data[C]// 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, 2015:45-56.
[9] CINQUE M, COTRONEO D, PECCHIA A. Event logs for the analysis of software failures: A rule-based approach[J]. IEEE Transactions on Software Engineering, 2012,39(6):806-821.
[10] LIN Q W, ZHANG H Y, LOU J G, et al. Log clustering based problem identification for online service systems[C]// 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C). IEEE, 2016: 102-111.
[11] LIANG Y L, ZHANG Y Y, XIONG H, et al. Failure prediction in IBM BlueGene/L event logs[C]// 7th IEEE International Conference on Data Mining (ICDM 2007). IEEE, 2007: 583-588.
[12] XU W, HUANG L, FOX A, et al. Detecting large-scale system problems by mining console logs[C]// Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. ACM, 2009:117-132.
[13] 孙雪奎,戴华,周建国,等. 基于日志模板主题特征的日志异常检测[J]. 计算机科学, 2023,50(6):313-321.
[14] 吕宗平,梁婷婷,顾兆军,等. 概念漂移下的系统日志在线异常检测模型[J]. 计算机应用与软件, 2023,40(10):314-321.
[15] DU M, LI F F, ZHENG G N, et al. DeepLog: Anomaly detection and diagnosis from system logs through deep learning[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017:1285-1298.
[16] MENG W B, LIU Y, ZHU Y C, et al. LogAnomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. AAAI, 2019:4739-4745.
[17] ZHANG X, XU Y, LIN Q W, et al. Robust log-based anomaly detection on unstable log data[C]// Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 2019: 807-817.
[18] 闫力,夏伟. 基于机器学习的日志异常检测综述[J]. 计算机系统应用, 2022,31(9):57-69.
[19] SÎRBU A, BABAOGLU O. Towards operator-less data centers through data-driven, predictive, proactive autonomics[J]. Cluster Computing, 2016,19(2):865-878.
[20] AGRAWAL B, WIKTORSKI T, RONG C M. Analyzing and predicting failure in Hadoop clusters using distributed hidden Markov model[C]// 2nd International Conference on Cloud Computing and Big Data in Asia. Springer, 2015:232-246.
[21] YU B X, YAO J Y, FU Q A, et al. Deep learning or classical machine learning? An empirical study on log-based anomaly detection[C]// Proceedings of IEEE/ACM 46th International Conference on Software Engineering. ACM, 2024. DOI:10.1145/3597503.3623308.
[22] 董昱灿,赵奎. 基于注意力机制多特征融合与文本情感分析的日志异常检测方法[J]. 四川大学学报(自然科学版), 2024,61(2):70-80.
[23] 尹春勇,冯梦雪. 基于注意力机制的半监督日志异常检测方法[J]. 计算机工程与科学, 2023,45(8):1405-1415.
[24] 钱晓钊,王澎. 面向图卷积神经网络鲁棒防御方法[J]. 计算机与现代化, 2023(1):74-80.
[25] ALHARTHI K A, JHUMKA A, DI S, et al. Clairvoyant: A log-based transformer-decoder for failure prediction in large-scale systems[C]// Proceedings of the 36th ACM International Conference on Supercomputing. ACM, 2022. DOI:10.1145/3524059.3532374.
[26] ALHARTHI K A, JHUMKA A, DI S, et al. Time machine: Generative real-time model for failure (and lead time) prediction in HPC systems[C]// 2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2023:508-521.
[27] ZHU J M, HE S L, LIU J Y, et al. Tools and benchmarks for automated log parsing[C]// 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2019:121-130.