Face Anti-spoofing Based on Domain Synthesis and Contrastive Learning
(1. School of Physics and Electronic Information, Yan’an University, Yan’an 716000, China; 2. School of Electronic Information Engineering, Xi’an Technological University, Xi’an 710021, China)
[1] 李刚,高政. 人脸识别理论研究进展[J]. 计算机与现代化, 2003(3):1-6.
[2] DÉNIZ O, BUENO G, SALIDO J, et al. Face recognition using histograms of oriented gradients[J]. Pattern Recognition Letters, 2011,32(12):1598-1603.
[3] LIU A J, TAN Z C, WAN J, et al. Face Anti-spoofing via adversarial cross-modality translation[J]. IEEE Transactions on Information Forensics and Security, 2021,16:2759
-2772.
[4] BOULKENAFET Z, KOMULAINEN J, HADID A. Face spoofing detection using colour texture analysis[J]. IEEE Transactions on Information Forensics and Security, 2016,11(8):1818-1830.
[5] LIU A J, ZHAO C X, YU Z T, et al. Contrastive context-aware learning for 3D high-fidelity mask face presentation attack detection[J]. IEEE Transactions on Information Forensics and Security, 2022,17:2497-2507.
[6] WANG W H, WEN F, ZHENG H Y, et al. Conv-MLP: A convolution and MLP mixed model for multimodal face anti-spoofing[J]. IEEE Transactions on Information Forensics and Security, 2022,17:2284-2297.
[7] YU Z T, WAN J, QIN Y X, et al. NAS-FAS: Static-dynamic central difference network search for face anti-spoofing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(9):3005-3023.
[8] ZHANG D A, LI C M, LI H Q, et al. Rethinking alignment and uniformity in unsupervised image semantic segmentation[C]// Proceedings of the AAAI Conference on Artificial Intelligence. AAAI, 2023,37(9):11192-11200.
[9] YUN S K, LEE H K, KIM J Y, et al. Patch-level representation learning for self-supervised vision Transformers[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:8344-8353.
[10] HUANG S, CHENG W H, CHENG R. Single patch based 3D high-fidelity mask face anti-spoofing[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2021:842-845.
[11] TIRUNAGARI S, POH N, WINDRIDGE D, et al. Detection of face spoofing using visual dynamics[J]. IEEE Transactions on Information Forensics and Security, 2015,10(4):762-777.
[12] ALSUFYANI N, ALI A, HOQUE S, et al. Biometric presentation attack detection using gaze alignment[C]// 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis (ISBA). IEEE, 2018:1-8.
[13] KOLLREIDER K, FRONTHALER H, FARAJ M I, et al. Real-time face detection and motion analysis with application in “liveness” assessment[J]. IEEE Transactions on Information Forensics and Security, 2007,2(3):548-558.
[14] PAN G, SUN L, WU Z H, et al. Eyeblink-based anti-spoofing in face recognition from a generic webcamera[C]// 2007 IEEE 11th International Conference on Computer Vision. IEEE, 2007:1-8.
[15] 施新岚,黄俊,黄洋,等. 基于Gabor纹理增强的人脸活体检测算法[J]. 重庆邮电大学学报(自然科学版), 2020,32(6):1023-1030.
[16] LI H L, WANG S Q, KOT A C. Face spoofing detection with image quality regression[C]// 2016 6th International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2016. DOI: 10.1109/IPTA.2016.78
21027.
[17] LIM W Q. The discrete shearlet transform: A new directional transform and compactly supported shearlet frames[J]. IEEE Transactions on Image Processing, 2010,19(5):1166-1180.
[18] WU Y Q, TAO D P, LUO Y, et al. Covered style mining via generative adversarial networks for face anti-spoofing[J]. Pattern Recognition, 2022,132:108957.
[19] YU B Y, LU J W, LI X, et al. Salience-aware face presentation attack detection via deep reinforcement learning[J]. IEEE Transactions on Information Forensics and Security, 2022,17:413-427.
[20] CAI R Z, LI H L, WANG S Q, et al. DRL-FAS: A novel framework based on deep reinforcement learning for face anti-spoofing[J]. IEEE Transactions on Information Forensics and Security, 2021,16:937-951.
[21] WANG Z, WANG Q C, DENG W H, et al. Face anti-spoofing using Transformers with relation-aware mechanism[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022,4(3):439-450.
[22] 王宏飞,程鑫,赵祥模,等. 光流与纹理特征融合的人脸活体检测算法[J]. 计算机工程与应用, 2022,58(6):170-176.
[23] HASAN M R, MAHMUD S M H, LI X Y. Face anti-spoofing using texture-based techniques and filtering methods[C]// 2019 3rd International Conference on Machine Vision and Information Technology (CMVIT 2019). IOP, 2019,1229. DOI: 10.1088/1742-6596/1229/1/012044.
[24] WANG G Q, HAN H, SHAN S G, et al. Cross-domain face presentation attack detection via multi-domain disentangled representation learning[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020:6677-6686.
[25] SHAO R, LAN X Y, LI J W, et al. Multi-adversarial discriminative deep domain generalization for face presentation attack detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:10023-10031.
[26] JIA Y P, ZHANG J, SHAN S G, et al. Single-side domain generalization for face anti-spoofing[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020:8481-8490.
[27] MAO J J, WENG B, HUANG T Q, et al. Research on multimodality face antispoofing model based on adversarial attacks[J]. Security and Communication Networks, 2021, 2021. DOI: 10.1155/2021/367033.
[28] 田野,项世军. 基于LBP和多层DCT的人脸活体检测算法[J]. 计算机研究与发展, 2018,55(3):643-650.
[29] YANG K D, ZHANG Z Y, TIAN Y L, et al. A secure authentication framework to guarantee the traceability of avatars in metaverse[J]. IEEE Transactions on Information Forensics and Security, 2023,18:3817-3832.
[30] YANG J W, LEI Z, LI S Z. Learn convolutional neural network for face anti-spoofing[J]. arXiv preprint arXiv:1408.5601, 2014.
[31] YU Z T, ZHAO C X, WANG Z Z, et al. Searching central difference convolutional networks for face anti-spoofing[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020:5294-5304.
[32] SUN Y Y, LIU Y J, LIU X M, et al. Rethinking domain generalization for face anti-spoofing: Separability and alignment[Z]. arXiv preprint arXiv:2303.13662, 2023.
[33] ZHANG Z W, YAN J J, LIU S F, et al. A face antispoofing database with diverse attacks[C]// 2012 5th IAPR International Conference on Biometrics (ICB). IEEE, 2012:26-31.
[34] WEN D, HAN H, JAIN A K. Face spoof detection with image distortion analysis[J]. IEEE Transactions on Information Forensics and Security, 2015,10(4):746-761.
[35] CHINGOVSKA I, ANJOS A, MARCEL S. On the effectiveness of local binary patterns in face anti-spoofing[C]//Proceedings of the 2012 International Conference of Biometrics Special Interest Group (BIOSIG). IEEE, 2012:1-7.
[36] BOULKENAFET Z, KOMULAINEN J, LI L, et al. OULU-NPU: A mobile face presentation attack database with real-world variations[C]// 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE, 2017:612-618.
[37] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778.
[38] FENG H C, HONG Z B, YUE H X, et al. Learning generalized spoof cues for face anti-spoofing[Z]. arXiv preprint arXiv:2005.03922, 2020.
[39] YANG X Y, YE J W, WANG X C. Factorizing knowledge in neural networks[J]. arXiv preprint arXiv:2207.03337, 2022.
[40] LIU Y J, JOURABLOO A, LIU X M. Learning deep models for face anti-spoofing: Binary or auxiliary supervision[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:389-398.
[41] SHAO R, LAN X Y, YUEN P C. Regularized fine-grained meta face anti-spoofing[C]// Proceedings of the AAAI Conference on Artificial Intelligence. AAAI, 2020,34:11974-11981.
[42] LIU S B, ZHANG K Y, YAO T P, et al. Adaptive normalized representation learning for generalizable face anti-spoofing[C]// Proceedings of the 29th ACM International Conference on Multimedia. ACM, 2021:1469-1477.
[43] WANG C Y, LU Y D, YANG S T, et al. PatchNet: A simple face anti-spoofing framework via fine-grained patch recognition[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:20249-20258.
[44] WANG Z , WANG Z Z, YU Z T, et al. Domain generalization via shuffled style assembly for face anti-spoofing[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022: 4113-4123.
[45] ZHOU Q Y, ZHANG K Y, YAO T P, et al. Instance-aware domain generalization for face anti-spoofing[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023:20453-20463.
[46] CHEN Z H, YAO T P, SHENG K K, et al. Generalizable representation learning for mixture domain face anti-spoofing[C]// Proceedings of the AAAI Conference on Artificial Intelligence. AAAI, 2021,35(2):1132-1139.
[47] ZHANG K Y, YAO T P, ZHANG J, et al. Face anti-spoofing via disentangled representation learning[J]. arXiv preprint arXiv:2008.08250, 2020.
[48] YU Z T, LI X B, NIU X S, et al. Face anti-spoofing with human material perception[C]// Proceedings of the 2020 16th European Conference on Computer Vision. Springer, 2020: 557-575.
[49] YU Z T, QIN Y X, ZHAO H S, et al. Dual-cross central difference network for face anti-spoofing[J]. arXiv preprint arXiv:2105.01290, 2021.