Review of Development Trends of Modeling Languages and Tools for Airborne Software
(1. School of Energy and Architecture, Xi’an Aeronautical Institute, Xi’an 710077, China; 2. School of Computer Science, Xi’an Aeronautical Institute, Xi’an 710077, China)
CAO Guozhen1, PENG Han2, ZHANG Xiaoli2, JING Yuejuan2, HOU Yuanyuan2. Review of Development Trends of Modeling Languages and Tools for Airborne Software[J]. Computer and Modernization, 2025, 0(05): 66-72.
[1] HANSSON J, HELTON S, FEILER P, ROI Analysis of the System Architecture Virtual Integration Initiative[R]. Carnegie-Mellon Univerity Software Engineering Institute Pittsburgh United, 2018.
[2] LIU B, ZHANG Y R, CAO X L, et al. A survey of model-driven techniques and tools for cyber-physical systems[J]. Frontiers of Information Technology & Electronic Engineering, 2020,21(11):1567-1590.
[3] HUGUES J, DELANGE J. Model-based design and automated validation of ARINC653 architectures[C]// 2015 International Symposium on Rapid System Prototyping (RSP 2015). IEEE, 2015:3-9.
[4] DMITRIEV K, ZAFAR S A, SCHMIECHEN K, et al. A lean and highly-automated model-based software development process based on DO-178C/DO-331[C]// 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). IEEE, 2020. DOI: 10.1109/DASC50938.2020.9256576.
[5] RIERSON L. Developing Safety-critical Software: A Practical Guide for Aviation Software and DO-178C Compliance[M]. CRC Press, 2017.
[6] VALE T, CRNKOVIC I, DE ALMEIDA E S, et al. Twenty-eight years of component-based software engineering[J]. Journal of Systems and Software, 2016,111:128-148.
[7] SELIĆ B, GÉRARD S. Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE[M]. Elsevier, 2014.
[8] BORDIN M, VARDANEGA T. A domain-specific metamodel for reusable object-oriented high-integrity components[C]// ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM, 2008:1-8.
[9] BENVENUTI L, FERRARI A, MANGERUCA L, et al. A contract-based formalism for the specification of heterogeneous systems[C]// 2008 Forum on Specification, Verification and Design Languages. IEEE, 2008:166-171.
[10] CICCHETTI A, CICCOZZI F, MAZZINI S, et al. CHESS: A model-driven engineering tool environment for aiding the development of complex industrial systems[C]// Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering. IEEE, 2012:362-365.
[11] DUBEY A, KARSAI G, KERESKENYI R, et al. A real-time component framework: Experience with CCM and ARINC-653[C]// 2010 13th IEEE International Symposium on Object/Component/ Service-Oriented Real-Time Distributed Computing. IEEE, 2010:143-150.
[12] DUBEY A, GOKHALE A, KARSAI G, et al. A Model-Driven Software Component Framework for Fractionated Spacecraft[C/OL]// Proceedings of the 5th International Conference on Spacecraft Formation Flying Missions and Technologies(SFFMT). IEEE, 2013[2024-08-07]. https://www.isis.vanderbilt.edu/publications/model-driven-software
-component-framework-fractionated-spacecraft.
[13] CORNILLEAU T, LINARD P, MOXON P, et al. ECOA:A new architecture concept for complex military software systems[J]. SAE International Journal of Aerospace, 2014(7):214-221.
[14] VANDERLEEST S H. Designing a future airborne capability environment (FACE) hypervisor for safety and security[C]// 2017 IEEE/AIAA 36th Digital Avionics Systems Conference(DASC). IEEE, 2017. DOI: 10.1109/DASC.2017.
8102056.
[15] SIMI S M, UIDENICH J, MULHOLLAND S P, et al. Model-based tools designed for the FACE technical standard, editions 3.0 & 2.1[C]// 2020 IEEE Aerospace Conference. IEEE, 2020. DOI: 10.1109/AERO47225.2020.9172601.
[16] MALLACHIEV K A, PAKULIN N V, KHOROSHILOV A V, et al. Using modularization in embedded OS[J]. Proceedings of the Institute for System Programming of RAS, 2017,29(4):283-294.
[17] MALLACHIEV K A, KHOROSHILOV A V. Building modular real-time software from unified component model[J]. Proceedings of the Institute for System Programming of RAS, 2018,30(3):135-148.
[18] PENG T, HÖFLINGER K, WEPS B, et al. A component-based middleware for a reliable distributed and reconfigurable spacecraft onboard computer[C]// 2016 IEEE 35th Symposium on Reliable Distributed Systems(SRDS). IEEE, 2016:337-342.
[19] 师丽斌,李蜀瑜. 基于 ARINC 653 标准的嵌入式构件元模型研究[J]. 电子设计工程, 2015(21): 91-94.
[20] PAZ A, EL BOUSSAIDI G. A requirements modelling language to facilitate avionics software verification and certification[C]// 2019 IEEE/ACM 6th International Workshop on Requirements Engineering and Testing(RET). IEEE, 2019:1-8.
[21] ROBATI T, GHERBI A, EL KOUHEN A, et al. Design and simulation of distributed IMA architectures using TTEthernet: A model-driven approach[J]. Journal of Ambient Intelligence and Humanized Computing, 2017,8(3):345-355.
[22] BARESI L, BLOHM G, KOLOVOS D S, et al. Formal verification and validation of embedded systems: The UML-based MADES approach[J]. Software & Systems Modeling, 2015,14(1):343-363.
[23] BLOUIN D, BORDE E. AADL: A language to specify the architecture of cyber-physical systems[M]// Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems. Springer, 2020:209-258.
[24] FEILER P H, DELANGE J, WRAGE L. A Requirement Specification Language for AADL[R]. Carnegie-Mellon Univerity Software Engineering Institute Pittsburgh United,
2016.
[25] ROBATI T, EL KOUHEN A, GHERBI A, et al. Time-triggered ethernet metamodel: Design and application [J]. Journal of Software, 2016,11(10): 1040-1053.
[26] ANNIGHOEFER B, REINHART J, BRUNNER M, et al. The concept of an autonomic avionics platform and the resulting software engineering challenges [C]// 2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems(SEAMS). IEEE, 2021:179-185.
[27] ANNIGHFER B. Model-driven development and simulation of integrated modular avionics (IMA) architectures [J]. SNE Simulation Notes Europe, 2018,28(2):61-66.
[28] 邱轶峰. 基于需求模型的复杂飞控系统软件安全性分析方法研究 [D]. 成都:电子科技大学, 2020.
[29] 张潇,王立松,让涛. 基于模型的综合航电平台初步设计 [J]. 计算机与现代化, 2016(6):29-35.
[30] 张晓丽,彭寒,景月娟. 综合航电分区间通信元模型设计研究 [J]. 计算技术与自动化, 2019,38(4):162-166.
[31] 李姣洁. 一种面向TTE网络的综合模块化航电系统建模方法的研究 [D]. 西安:西安电子科技大学, 2020.
[32] RUMPOLD A, PRÖLL R, BAUER B. A domain-aware framework for integrated model-based system analysis and design[C]// 5th International Conference on Model-Driven Engineering and Software Development. SCITE, 2017:157-168.
[33] PRÖLL R, RUMPOLD A, BAUER B. Applying integrated domain-specific modeling for multi-concerns development of complex systems[C]// 5th International Conference on Model-Driven Engineering and Software Development. Springer, 2017:247-271.
[34] STEGEN J, DUTRE S, GUO J Z, et al. Meta model application for consistency management of models for avionic systems design[C]// 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE, 2019:790-795.
[35] BERNARDI S, MARRONE S, MERSEGUER J, et al. Towards a model-driven engineering approach for the assessment of non-functional properties using multi-formalism[J]. Software & Systems Modeling, 2019,18(3):2241-2264.
[36] SURHONE L M, TENNOE M T, HENSSONOW S F. Architecture Analysis and Design Language [M]. Betascript Publishing, 2010.
[37] BRAHMI A, CAROLUS M J, DELMAS D, et al. Industrial Use of a Safe and Efficient Formal Method Based Software Engineering Process in Avionics [EB/OL]. [2024-08-07]. https://scholar.google.co.za/citations?view_op=view_
citation&hl = zh-CN&user = nWrLOxIAAAAJ&citation_for_
view=nWrLOxIAAAAJ:WF5omc3nYNoC.
[38] BRAHMI A, DELMAS D, ESSOUSSI M, et al. Formalise to automate: Deployment of a safe and cost-efficient process for avionics software[C]// 9th European Congress on Embedded Real Time Software and Systems(ERTS 2018), 2018.
[39] LIU L, ZHAO W, JIANG Z Y, et al. A modeling method for integrated modular avionics dynamic reconfiguration process based on AADL[C]// Journal of Physics: Conference Series, 6th Annual International Conference on Network and Information Systems for Computers. IOP Publishing, 2020. DOI: 10.1088/1742-6596/1646/1/012132.
[40] YUAN C Z, HE H Y, ZHAN P P, et al. A framework for analysis of non-functional properties of AADL model based on PNML[C]// 8th International Conference in Communications, Signal Processing, and Systems. Springer, 2021:2562-2570.
[41] 王明明,胡军,张维珺,等. 基于模型的IMA时间资源配置验证方法研究[J]. 计算机技术与发展, 2018,28(5):32-37.
[42] 杨海云,孙有朝,阮宏泽. 基于AADL和HiP-HOPS的IMA系统安全性分析方法研究[J]. 航空计算技术, 2019,49(6):85-88.
[43] HOVSEPYAN A U, LANDUYT D V, OP D, et al. Model-driven software development of safety-critical avionics systems: An experience report [C]// 1st International Workshop on Model-Driven Development Processes and Practices co-located with ACM/IEEE 17th International Conference on Model Driven Engineering Languages & Systems (MoDELS 2014). IEEE, 2014,1249:28-37.
[44] DE LA VARA J L, RUIZ A, GALLINA B, et al. The AMASS approach for assurance and certification of critical systems[C]// Embedded World 2019, 2019.
[45] ALAÑA E, HERRERO J. Design and safety assessment of on-board software applications using the amass platform[C]// EUROSPACE DASIA, 2018.
[46] ZIMMER L, YVARS P A, LAFAYE M. Models of requirements for avionics architecture synthesis: Safety, capacity and security[C]// Complex Systems Design & Management (CSD&M) 2020 Conference, 2020.
[47] 张新. 模型驱动的民机显示系统软件开发方法研究与应用 [D]. 上海:上海交通大学, 2017.