[1] TALBOT K I, DULEY P R, HYATT M H. Specific emitter identification and verification[J]. Technology Review, 2003,113:113-130.
[2] 桂云川,杨俊安,吕季杰,等. 基于经验模态分解的通信辐射源分形特征提取算法[J]. 探测与控制学报, 2016,38(1):104-108.
[3] 吴子龙,陈红,雷迎科,等. 基于堆栈式 LSTM 网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2020,42(12):2915-2923.
[4] WANG J, ZHANG B, ZHANG J, et al. Specific emitter identification based on deep adversarial domain adaptation[C]// 2021 4th International Conference on Information Communication and Signal Processing (ICICSP). IEEE, 2021:104-109.
[5] HUANG K J, YANG J, LIU H H, et al. Deep adversarial neural network for specific emitter identification under varying frequency[J]. Bulletin of the Polish Academy of Sciences. Technical Sciences, 2021, 69(2). DOI: 10.24425
/bpasts.2021.136737.
[6] ZHANG X L, LI T Y, GONG P, et al. Variable-modulation specific emitter identification with domain adaptation[J]. IEEE Transactions on Information Forensics and Security, 2022,18:380-395.
[7] 王聪,但波,张财生. 一种信道自适应的辐射源无监督训练与识别方法[J]. 兵器装备工程学报, 2023,44(4):211-216.
[8] WANG W, LI H J, DING Z M, et al. Rethinking maximum mean discrepancy for visual domain adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,34(1):264-277.
[9] LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks[C]// Proceedings of the 32nd International Conference on Machine Learning. ACM, 2015:97-105.
[10] KANG G L, JIANG L, YANG Y, et al. Contrastive adaptation network for unsupervised domain adaptation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:4893-4902.
[11] LI J J, CHEN E P, DING Z M, et al. Maximum density divergence for domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,43(11):3918-3930.
[12] ZHU Y C, ZHUANG F Z, WANG J D, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,32(4):1713-1722.
[13] KRICHEN M. Generative adversarial networks[C]// 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). ACM, 2023:1-7.
[14] HASSANPOUR ZONOOZI M, SEYDI V. A survey on adversarial domain adaptation[J]. Neural Processing Letters, 2023,55(3):2429-2469.
[15] 郭梁. 基于迁移学习的辐射源识别技术研究[D]. 成都: 电子科技大学, 2021.
[16] WANG J, ZHANG B, ZHANG J, et al. Specific emitter identification based on deep adversarial domain adaptation[C]// 2021 4th International Conference on Information Communication and Signal Processing (ICICSP). ACM, 2021:104-109.
[17] MANSOUR Y, MOHRI M, ROSTAMIZADEH A. Domain adaptation with multiple sources[C]// Proceedings of the 21st International Conference on Neural Information Processing Systems. ACM, 2008:1041-1048.
[18] HOFFMAN J, MOHRI M, ZHANG N. Algorithms and theory for multiple-source adaptation[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. ACM, 2018:8256-8266.
[19] PENG X C, BAI Q X, XIA X D, et al. Moment matching for multi-source domain adaptation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019:1406-1415.
[20] ZHAO S C, WANG G Z, ZHANG S H, et al. Multi-source distilling domain adaptation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(7):12975-12983.
[21] LI Y Y, WANG S S, WANG B L, et al. Transferable feature filtration network for multi-source domain adaptation[J]. Knowledge-Based Systems, 2023,260:110113.
[22] XU R J, CHEN Z L, ZUO W M, et al. Deep cocktail network: Multi-source unsupervised domain adaptation with category shift[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018:3964-3973.
[23] ZHU Y C, ZHUANG F Z, WANG D Q. Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources[J]. Proceedings of the AAAI conference on artificial intelligence,2019,33(1):5989-5996.
[24] CHEN C Q, XIE W P, HUANG W B, et al. Progressive feature alignment for unsupervised domain adaptation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE,2019:627-636.
[25] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[J]. arXiv preprint arXiv:2002.05709, 2020.
[26] YUE X Y, ZHENG Z W, ZHANG S h, et al. Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:13834-13844.
[27] SANKHE K, BELGIOVINE M, ZHOU F, et al. ORACLE: Optimized radio classification through convolutional neural networks[C]// 2019 IEEE Conference on Computer Communications. IEEE, 2019:370-378.
[28] AL-SHAWABKA A, RESTUCCIA F, D’ORO S, et al. Massive-scale I/Q datasets for WiFi radio fingerprinting[J]. Computer Networks, 2020,182. DOI: 10.1016/j.comnet.2020.107566.
[29] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778.
[30] ZHU Y C, ZHUANG F Z, WANG J D, et al. Multi-representation adaptation network for cross-domain image classification[J]. Neural Networks, 2019,119:214-221.
[31] WANG Y F, HUANG H Y, RUDIN C, et al. Understanding how dimension reduction tools work: An empirical approach to deciphering t-SNE, UMAP, TriMAP, and PaCMAP for data visualization[J]. Journal of Machine Learning Research, 2021,22(201):214-221.