[1] 陈炳坤. 数字电视前端机房安全隐患探讨[J]. 电声技术, 2023,47(11):78-80.
[2] 闫龙川,刘军,何永远,等. 基于机器视觉的数据中心机房安全管控技术研究与应用[J]. 电力信息与通信技术, 2023,21(5):42-47.
[3] 沈加炜,陆一鸣,陈晓艺,等. 基于深度学习的人体行为检测方法研究综述[J]. 计算机与现代化, 2023(9):1-9.
[4] 徐涛,田崇阳,刘才华. 基于深度学习的人群异常行为检测综述[J]. 计算机科学, 2021,48(9):125-134.
[5] DIREKOGLU C. Abnormal crowd behavior detection using motion information images and convolutional neural networks[J]. IEEE Access, 2020,8:80408-80416.
[6] LI J, HUANG Q W, DU Y J, et al. Variational abnormal behavior detection with motion consistency[J]. IEEE Transactions on Image Processing, 2021,31:275-286.
[7] LI J X, TANG F Q, ZHU C, et al. BP-YOLO: A real-time product detection and shopping behaviors recognition model for intelligent unmanned vending machine[J]. IEEE Access, 2024,12:21038-21051.
[8] LI L N, LIU M H, SUN L Y, et al. ET-YOLOv5s: Toward deep identification of students’ in-class behaviors[J]. IEEE Access, 2022,10:44200-44211.
[9] 赵连斌,张锋,杨辉. 基于改进卷积神经网络算法的违规作业行为检测[J]. 电子设计工程, 2023,31(21):141-145.
[10] 张瑞,李其申,储珺. 基于3D卷积神经网络的人体动作识别算法[J]. 计算机工程, 2019,45(1):259-263.
[11] INSAFUTDINOV E, PISHCHULIN L, ANDRES B, et al. DeeperCut: A deeper, stronger, and faster multi-person pose estimation model[C]// Proceedings of the 14th European Conference on Computer Vision. Springer, 2016:34-50.
[12] HUANG R, PEDOEEM J, CHEN C X. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers[C]// Proceedings of the 2018 IEEE International Conference on Big Data. IEEE, 2018:2503-2510.
[13] 马钰锡,谭励,董旭,等. 面向智能监控的行为识别[J]. 中国图象图形学报, 2019,24(2):282-290.
[14] 王巍,张世泽,魏忠诚,等. 基于多尺度特征融合的轻量级异常行为检测模型[J]. 电脑与信息技术, 2023,31(5):16-19.
[15] 曹雨淇,徐慧英,朱信忠,等. 基于YOLOv8改进的打架斗殴行为识别算法:EFD-YOLO[J/OL]. 计算机工程与科学:1-14(2024-01-26)[2024-02-05]. https://kns.cnki.net/kcms/detail/43.1258.TP.20240126.0819.002.html.
[16] 郭庆梅,刘宁波,王中训,等. 基于深度学习的目标检测算法综述[J]. 探测与控制学报, 2023,45(6):10-20.
[17] TALAAT F M, ZAINELDIN H. An improved fire detection approach based on YOLO-v8 for smart cities[J]. Neural Computing and Applications, 2023,35(28):20939-20954.
[18] 王靖东,张东升. 基于改进的YOLOv8脆柿缺陷检测[J]. 农业与技术, 2024,44(3):22-25.
[19] 魏陈浩,杨睿,刘振丙,等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023,44(6):1104-1111.
[20] HOU Y X, LI G L, ZHANG H Y, et al. Affine projection algorithms based on sigmoid cost function[J]. Signal Processing, 2024,219. DOI: 10.1016/j.sigpro.2024.109397.
[21] 狄巨星,冯方涛,杨阳,等. YOLOv5s中注意力机制对检测小目标的影响[J]. 福建电脑, 2024,40(2):59-62.
[22] 武亚光,张才俊,程飞飞. 基于FP-growth算法的多尺度用电异常行为检测方法[J]. 电子设计工程, 2023,31(23):118-121.
[23] QIN X, WANG Z L, BAI Y C, et al. FFA-Net: Feature fusion attention network for single image dehazing[C]// Proceedings of the AAAI Conference on Artificial Intelligence.AAAI, 2020,34(7):11908-11915.
[24] XIONG C Q, ZAYED T, ABDELKADER E M. A novel YOLOv8-GAM-Wise-IoU model for automated detection of bridge surface cracks[J]. Construction and Building Materials, 2024,414. DOI: 10.1016/j.conbuildmat.2024.135025.
[25] 张嘉琪,徐啟蕾. 基于NAM-YOLO网络的苹果缺陷检测算法[J]. 计算机与现代化, 2023(10):53-58.
[26] 罗伟,刘思远,徐健祥,等. 基于改进YOLOv5s的太阳能电池缺陷检测算法[J]. 计算机与现代化, 2023(7):119-126.
[27] 汤浩威,姚军财,姚聪颖,等. 基于改进YOLOv5的输电线路多目标检测[J]. 计算机与现代化, 2023(2):78-82.
[28] WANG Z, LIU Y, DUAN S Y, et al. An efficient detection of non-standard miner behavior using improved YOLOv8[J]. Computers and Electrical Engineering, 2023,112. DOI: 10.1016/j.compeleceng.2023.109021.