ZHU Fen, HE Lifeng, SUN Shuang, ZHANG Mengying, YU Jiajia. Pancreas Segmentation Model Based on Deformable Residual and Cascading Encoding[J]. Computer and Modernization, 2024, 0(06): 83-88.
[1] SINDHU A, RADHA V. Pancreatic tumour segmentation in recent medical imaging–an overview[J]. Computational Vision and Bio-Inspired Computing: ICCVBIC 2019, 2020:514-522.
[2] YAO X, SONG Y Q, LIU Z. Advances on pancreas segmentation: a review[J]. Multimedia Tools and Applications, 2020,79:6799-6821.
[3] CARDOBI N, DAL Palù A, PEDRINI F, et al. An overview of artificial intelligence applications in liver and pancreatic imaging[J]. Cancers, 2021,13(9):2162.
[4] CAI L, GAO J Y, ZHAO D. A review of the application of deep learning in medical image classification and segmentation[J]. Annals of Translational Medicine, 2020,8(11):713-727.
[5] KUMAR H, DESOUZA S V, PETROV M S. Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review[J]. Computer Methods and Programs in Biomedicine, 2019,178:319-328.
[6] 马豪, 刘彦, 张俊然. 基于模型压缩与重构U-net的胰腺分割[J]. 计算机工程与设计, 2022,43(7):1998-2006.
[7] LI M Y, LIAN F H, WANG C Y, et al. Dual adversarial convolutional networks with multilevel cues for pancreatic segmentation[J]. Physics in Medicine & Biology, 2021,66(17):175025.
[8] 曹路洋, 李建微. 面向深度学习的胰腺医学图像分割方法研究进展[J]. 小型微型计算机系统, 2022,43(12):2591-2604.
[9] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2015:3431-3440.
[10] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Springer, 2015:234-241.
[11] ZHOU Z, RAHMAN Siddiquee M M, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, Springer, 2018:3-11.
[12] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: Learning where to look for the pancreas[J]. arXiv preprint arXiv:1804.03999, 2018.
[13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc, 2017:6000-6010.
[14] DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,162:94-114.
[15] 毕秀丽,陆猛,肖斌,等. 基于双解码U型卷积神经网络的胰腺分割[J]. 软件学报, 2022,33(5):1947-1958.
[16] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]// Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2017:764-773.
[17] ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, IEEE, 2019,16(7):4681-4690.
[18] LI W S, QIN S Y, LI F, et al. MAD-UNet: A deep U-shaped network combined with an attention mechanism for pancreas segmentation in CT images[J]. Medical Physics, 2021,48(1):329-341.
[19] QIU C J, SONG Y Q, LIU Z, et al. CMFCUNet: Cascaded multi-scale feature calibration UNet for pancreas segmentation[J]. Multimedia Systems, 2023,29(2):871-886.
[20] LIU H, FOYGEL Barber R. Between hard and soft thresholding: optimal iterative thresholding algorithms[J]. Information and Inference: A Journal of the IMA, 2020,9(4):899-933.
[21] FAN D P, ZHOU T, JI G P, et al. Inf-net: Automatic covid-19 lung infection segmentation from ct images[J]. IEEE Transactions on Medical Imaging, 2020,39(8):2626-2637.
[22] TRINH M N, NGUYEN N T, TRAN T T, et al. A deep learning-based approach with image-driven active contour loss for medical image segmentation[C]// Proceedings of International Conference on Data Science and Applications: ICDSA 2021. Springer Singapore, 2022:1-12.
[23] WANG G, PENG Y, ZHANG S, et al. Pyramid self-attention mechanism-based change detection in hyperspectral imagery[J]. Journal of Applied Remote Sensing, 2021,15(4):042611-042611.
[24] MAN Y, HUANG Y, FENG J, et al. Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net[J]. IEEE transactions on medical imaging, 2019,38(8):1971-1980.
[25] HASAN S M K, LINTE C A. A modified U-Net convolutional network featuring a nearest-neighbor re-sampling-based elastic-transformation for brain tissue characterization and segmentation[C]// 2018 IEEE Western New York Image and Signal Processing Workshop (WNYISPW). IEEE, 2018:1-5.
[26] SANFORD T H, ZHANG L, HARMON S A, et al. Data augmentation and transfer learning to improve generalizability of an automated prostate segmentation model[J]. AJR. American journal of roentgenology, 2020,215(6):1403.
[27] ROSEBROCK A. Intersection over Union (IoU) for object detection[EB/OL].[2016-11-07][2023-05-03]. https//www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection.
[28] 向智霆,刘剑聪,魏柳,等. 基于全局特征U-net的胰腺图像分割[J]. 重庆邮电大学学报(自然科学版), 2022,34(02):216-222.