Adaptive Bald Eagle Search Algorithm with Dynamic Learning and Gaussian Mutation
(1. School of Mathematical Science, Mudanjiang Normal University, Mudanjiang 157009, China;
2. Institute of Applied Mathematics, Mudanjiang Normal University, Mudanjiang 157009, China;
3. School of Computer and Information Technology, Mudanjiang Normal University, Mudanjiang 157009, China)
XIA Huang-zhi, CHEN Li-min, MAO Xue-di, . Adaptive Bald Eagle Search Algorithm with Dynamic Learning and Gaussian Mutation[J]. Computer and Modernization, 2024, 0(01): 117-126.
[1] LOU A. A fusion algorithm of gravitational search and Tabu search[C]// Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science. 2019:150-157.
[2] CHITTY D M. Partial-ACO as a GA mutation operator applied to TSP instances[C]// Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2021:69-70.
[3] 赵然,郭志川,朱小勇. 一种基于Levy飞行的改进蝗虫优化算法[J]. 计算机与现代化, 2020(1):104-110.
[4] DHIMAN G, KAUR A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems[J]. Engineering Applications of Artificial Intelligence, 2019,82:148-174.
[5] KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of International Conference on Neural Networks. 1995,4:1942-1948.
[6] SANKALAP A, SATVIR S. Butterfly optimization algorithm: A novel approach for global optimization[J]. Soft Computing, 2019,23(3):715-734.
[7] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014,69:46-61.
[8] KARABOGA D. An Idea Based on Honey Bee Swarm for Numerical Optimization[R]. Turkey:Erciyes University, 2005.
[9] MIRJALILI S. SCA: A Sine Cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016,
96:120-133.
[10] STORN R, PRICE K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997,11(4):341-359.
[11] ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 2020,53(3):2237-2264.
[12] ZHANG Y H, ZHOU Y Q, ZHOU G, et al. A curve approximation approach using bio-inspired polar coordinate bald eagle search algorithm[J]. International Journal of Computational Intelligence Systems, 2022,15(1). DOI:10.1007/s44196-022-00084-7.
[13] LIU W L, ZHANG J, WEI W, et al. A hybrid bald eagle search algorithm for time difference of arrival localization[J]. Applied Sciences, 2022,12(10):5221. DOI: 10.3390/
app12105221.
[14] SAYED G I, SOLIMAN M M, HASSANIEN A E. A novel melanoma prediction model for imbalanced data using optimized squeezenet by bald eagle search optimization[J]. Computers in Biology and Medicine, 2021,136(10). DOI: 10.1016/j.compbiomed.2021.104712.
[15] YAN J X, LI G, QI G P, et al. Improved feed forward with bald eagle search for conjunctive water management in deficit region[J]. Chemosphere, 2022,309(3). DOI: 10.1016/j.chemosphere.2022.136614.
[16] 郭云川,张长胜,段青娜,等. 融合多策略的改进秃鹰搜索算法[J/OL].控制与决策:1-9[2023-02-23]. https://doi.org/10.13195/j.kzyjc.2022.0211.
[17] SHARMA S R, KAUR M, SINGH B. A self-adaptive bald eagle search optimization algorithm with dynamic opposition-based learning for global optimization problems[J]. Expert Systems, 2022. DOI: 10.1111/exsy.13170.
[18] 丁容,高建瓴,张倩 .融合自适应惯性权重和柯西变异的秃鹰搜索算法[J/OL]. 小型微型计算机系统:1-9[2023-01-13]. http://kns.cnki.net/kcms/detail/21.1106.TP.20220
418.1308.018.html.
[19] 张达敏,徐航,王依柔,等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021,36(5):1173-1180.
[20] 宁杰琼,何庆. 混合策略改进的蝴蝶优化算法[J]. 计算机应用研究, 2021,38(6):1718-1723.
[21] 宋立钦,陈文杰,陈伟海,等. 基于混合策略的麻雀搜索算法改进及应用[J/OL]. 北京航空航天大学学报:1-16[2023-02-23]. https://doi.org/10.13700/j.bh.1001-5965.
2021.0629.
[22] 张达敏,陈忠云,辛梓芸,等. 基于疯狂自适应的樽海鞘群算法[J]. 控制与决策,2020,35(9):2112-2120.
[23] LI Y, YU X M, LIU J S. An opposition-based butterfly optimization algorithm with adaptive elite mutation in solving complex high-dimensional optimization problems[J]. Mathematics and Computers in Simulation, 2023,204:498-528.
[24] 卓然,王未卿. 混沌映射与动态学习的自适应樽海鞘群算法[J]. 计算机工程与设计, 2021,42(7):1963-1972.
[25] JI Y S, ZHAO X C, HAO J L. A novel UAV path planning algorithm based on double-dynamic biogeography-based learning particle swarm optimization[J]. Mobile Information Systems, 2022,2022:1-23.
[26] LI G, DONG J Y, YEH W C, et al. DLEA: A dynamic learning evolution algorithm for many-objective optimization[J]. Information Sciences, 2021,574:567-589.
[27] CHEN L, TIAN Y, MA Y P. An improved grasshopper optimization algorithm based on dynamic dual elite learning and sinusoidal mutation[J]. Computing, 2022,104(5):981-1015.
[28] XU Y T, CHEN H L, LUO J, et al. Enhanced moth-flame optimizer with mutation strategy for global optimization[J]. Information Sciences, 2019,492:181-203.
[29] ZHANG X, XU Y T, YU C Y, et al. Gaussian mutational chaotic fruit fly-built optimization and feature selection[J]. Expert Systems with Applications, 2020,141. DOI: 10.1016/j.eswa.2019.112976.
[30] SONG S M, WANG P J, HEIDARI A A, et al. Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns[J]. Knowledge-Based
Systems, 2021,215. DOI:10.1016/j.knosys.2020.106425.
[31] HAO X D, FANG Y M, MA S D, et al. Multi-swarm improved moth-flame optimization algorithm with chaotic grouping and Gaussian mutation for solving engineering optimization problems[J]. Expert Systems with Applications, 2022,204(5).