WANG Hong-jie, XU Sheng-chao, YANG Bo, MAO Ming-yang, JIANG Jin-ling. Automatic Arrangement Method of Cloud Network Security Service Chain Based on SRv6 Technology[J]. Computer and Modernization, 2024, 0(01): 1-5.
[1] NEJABATI R, MOAZZENI S, JAISUDTHI P, et al. Zero-touch network orchestration at the edge[C]// 2021 International Conference on Computer Communications and Networks (ICCCN). 2021. DOI:10.1109/ICCCN52240.2021.9
522194.
[2] KHAN T A, ABBAS K, MUHAMMAD A, et al. An intent-driven closed-loop platform for 5G network service orchestration[J]. Computers Materials & Continua, 2022,70(3):4323-4340.
[3] 吴宇彤, 周金和. 一种采用NFV架构的服务功能链动态编排与部署[J]. 电讯技术, 2022,62(10):1506-1513.
[4] GUO S Y, QI Y Y, JIN Y, et al. Endogenous trusted DRL-based service function chain orchestration for IoT[J]. IEEE Transactions on Computers, 2021,71(2):397-406.
[5] THIRUVENKADAM S, SUJITHA V, JO H, et al. A heuristic fuzzy based 5G network orchestration framework for dynamic virtual network embedding[J]. Applied Sciences, 2022,12(14). DOI: 10.3390/app12146942.
[6] HURMELINNA-LAUKKANEN P, MOLLER K, NATTI S. Orchestrating innovation networks: Alignment and orchestration profile approach[J]. Journal of Business Research, 2022,140:170-188.
[7] MELEKOODAPPATTU J G, SUBBIAN P S, QUEEN M P F. Detection and classification of breast cancer from digital mammograms using hybrid extreme learning machine classifier[J]. International Journal of Imaging Systems and Technology, 2021,31(2): 909-920.
[8] WIĘCEK D, MICHALSKI I, RZEŹNICZAK K, et al. Multi-RAT orchestration method for heterogeneous wireless networks[J]. Applied Sciences, 2021,11(18). DOI: 10.
3390/app11188281.
[9] RAN J, WANG W K, HU H F. Dynamic service function chain deployment and readjustment method based on deep reinforcement learning[J]. Sensors, 2023,23(6). DOI: 10.
3390/s23063054.
[10] ZHANG Y H, ZHANG F, TONG S, et al. A dynamic planning model for deploying service functions chain in fog-cloud computing[J]. Journal of King Saud University-Computer and Information Sciences, 2022,34(10):7948-7960.
[11] ZHANG C C, WANG X W, DONG A W, et al. The intelligent multi-domain service function chain deployment: Architecture, challenges and solutions[J]. International Journal of Communication Systems, 2021, 34(1). DOI: 10.1002
/dac.4665.
[12] KHARATI E. Creating balance on bandwidth consumption using network coding in wireless sensor networks[J]. Majlesi Journal of Electrical Engineering, 2020,14(3):23-38.
[13] LARIMI S S N, SALAMI B, UNSAL O S, et al. Understanding power consumption and reliability of high-bandwidth memory with voltage underscaling[C]// 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 2021:517-522.
[14] ZHANG J F, ZHANG W S, XU J D. Bandwidth-efficient multi-task AI inference with dynamic task importance for the Internet of Things in edge computing[J]. Computer Networks, 2022,216. DOI: 10.1016/j.comnet.2022.109262.
[15] LI H P, KORDI M E. DSPPV: Dynamic service function chains placement with parallelized virtual network functions in mobile edge computing[J]. Internet of Things, 2023,22(2). DOI: 10.1016/j.iot.2023.100733.
[16] TOKUDA K, SATO T, OKI E. Network slice reconfiguration with deep reinforcement learning under variable number of service function chains[J]. Computer Networks, 2023,224(3). DOI: 10.1016/j.comnet.2023.109636.
[17] QIN Y D, GUO D K, LUO L L, et al. Service function chain migration with the long-term budget in dynamic networks[J]. Computer Networks, 2023,223(99). DOI:10.10
16/j.comnet.2023.109563.
[18] HUANG W W, LI SONG, WANG S N, et al. An improved adaptive service function chain mapping method based on deep reinforcement learning[J]. Electronics, 2023,12(6). DOI : 10.3390/electronics12061307.
[19] GAO J, FENG L, YU P, et al. Resource consumption and security-aware multi-tenant service function chain deployment based on hypergraph matching[J]. Computer Networks, 2022,216(3). DOI: 10.1016/j.comnet.2022.109298.
[20] YAGHOUBPOUR F, BAKHSHI B, SEIFI F. End-to-end delay guaranteed service function chain deployment: A multi-level mapping approach[J]. Computer Communications, 2022,194:433-445.
[21] HU H Y, KANG Q Y, ZHAO S, et al. Service function chain deployment method based on traffic prediction and adaptive virtual network function scaling[J]. Electronics, 2022,11(16). DOI: 10.3390/electronics11162625.
[22] ZHAI D, MENG X R, YU Z H, et al. A security-aware service function chain deployment method for load balance and delay optimization[J]. Scientific Reports, 2022,12(1). DOI: 10.1038/s41598-022-14494-2.
[23] NAJAFI B, PARSAEEFARD S, LEON-GARCIA A. Estimation of missing data in intelligent transportation system[C]// 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). 2020:1-6. DOI: 10.1109/VTC2020-Fall
49728.2020.9348581.
[24] XU L Y, HU H F, LIU Y N. Heuristic strategy of service function chain deployment based on N-base continuous digital coding in network function virtualization environment[J]. Electronics, 2022,11(3). DOI: 10.3390/electroni
cs11030331.
[25] MORENO J F C, SATTLER R, CISTERNA R P C C, et al. Online service function chain deployment for live-streaming in virtualized content delivery networks: A deep reinforcement learning approach[J]. Future Internet, 2021,13(11). DOI: 10.3390/fi13110278.
[26] DISTLER V, FASSL M, HABIB H, et al. A systematic literature review of empirical methods and risk representation in usable privacy and security research[J]. ACM Transactions on Computer-Human Interaction, 2021,18(6):28-35.
[27] LI Y H, LIU R F, LIU X Y, et al. Research on information security risk analysis and prevention technology of network communication based on cloud computing algorithm[J]. Journal of Physics: Conference Series,2021,1982(1):12129-12131.