Safety Helmet Detection Based on Lightweight YOLOv5
(1. Nari Technology Co., Ltd., Nanjing 210000, China; 2. School of Computer Science, Nanjing University of Information Science & Technology, Nanjing 210044, China)
[1] 赵继生. 基于卷积神经网络的变电站监控图像识别方法研究[D]. 保定:华北电力大学, 2016.
[2] WARANUSAST R, BUNDON N, TIMTONG V, et al. Machine vision techniques for motorcycle safety helmet detection[C]// Proceedings of the 2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013). 2013:35-40.
[3] LI J, LIU H M, WANG T Z, et al. Safety helmet wearing detection based on image processing and machine learning[C]// Proceedings of the 2017 9th International Conference on Advanced Computational Intelligence (ICACI). 2017:201-205.
[4] YOGAMEENA B, MENAKA K, SARAVANA PERUMAAL S. Deep learning-based helmet wear analysis of a motorcycle rider for intelligent surveillance system[J]. IET Intelligent Transport Systems, 2019,13(7):1190-1198.
[5] 赵红成,田秀霞,杨泽森,等. YOLO-S:一种新型轻量的安全帽佩戴检测模型[J]. 华东师范大学学报(自然科学版), 2021(5):134-145.
[6] 张业宝,徐晓龙. 基于改进SSD的安全帽佩戴检测方法[J]. 电子测量技术, 2020,43(19):80-84.
[7] 马小陆,王明明,王兵. YOLOv3在安全帽佩戴检测中的应用研究[J]. 河北工程大学学报(自然科学版), 2020,37(4):78-86.
[8] FILATOV N, MALTSEVA N, BAKHSHIEV A. Development of hard hat wearing monitoring system using deep neural networks with high inference speed[C]// Proceedings of the 2020 International Russian Automation Conference (RusAutoCon). 2020:459-463.
[9] LI Z S, XIE W Q, ZHANG L Z, et al. Toward efficient safety helmet detection based on YOLOv5 with hierarchical positive sample selection and box density filtering[J]. IEEE Transactions on Instrumentation and Measurement, 2022,71. DOI: 10.1109/TIM.2022.3169564.
[10] HAN K, ZENG X D. Deep learning-based workers safety helmet wearing detection on construction sites using multi-scale features[J]. IEEE Access, 2021,10:718-729.
[11] 张锦,屈佩琪,孙程,等. 基于改进YOLOv5的安全帽佩戴检测算法[J]. 计算机应用, 2022,42(4):1292-1300.
[12] 陈永平,朱建清,谢懿,等. 基于外接圆半径差损失的实时安全帽检测算法[J]. 计算机科学, 2022,49(S1):424-428.
[13] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[14] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
[15] GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1440-1448.
[16] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015,1:91-99.
[17] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:936-944.
[18] DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:379-387.
[19] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788.
[20] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:21-37.
[21] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2999-3007.
[22] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:1-9.
[23] JOCHER G. YOLOv5[EB/OL]. (2020-08-09)[2022-09-21]. https://github.com/ ultralytics/yolov5.
[24] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[25] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:6848-6856.
[26] HAN K, WANG Y H, TIAN Q, et al. GhostNet: More features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:1577-1586.
[27] 刘乔寿,赵志源,王均成,等. 高性能YOLOv5:面向嵌入式平台高性能目标检测算法研究[J/OL]. 电子与信息学报:1-11[2022-09-21]. DOI: 10.11999/JEIT220413.
[28] CAO J X, CHEN Q, GUO J, et al. Attention-guided context feature pyramid network for object detection[J]. arXiv preprint arXiv:2005.11475, 2020.
[29] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[30] EVERINGHAM M, WINN J. The PASCAL visual object classes challenge 2012 (VOC2012) development kit[DB/OL]. (2012-05-18)[2022-09-21]. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/devkit_doc.pdf.