[1] HALL T, BEECHAM S, BOWES D, et al. A systematic literanture review on fault prediction performance in software engineering[J]. IEEE Transactions on Software Engineering, 2012,38(6):1276-1304.
[2] 贾修一,张文舟,李伟湋,等. 基于变分自编码器的异构缺陷预测特征表示方法[J]. 软件学报, 2021,32(7):2204-2218.
[3] 倪超,陈翔,刘望舒,等. 基于特征迁移和实例迁移的跨项目缺陷预测方法[J]. 软件学报, 2019,30(5):1308-1329.
[4] HOSSEINI S, TURHAN B, GUNARACHNA D. A systematic literature review and meta-analysis on cross project defect prediction[J]. IEEE Transactions on Software Engineering, 2019,45(2):111-147.
[5] 陈翔,王莉萍,顾庆,等. 跨项目软件缺陷预测方法研究综述[J]. 计算机学报, 2018,41(1):254-274.
[6] ZIMMERMANN T, NAGAPPAN N, GALL H, et al. Cross-project defect prediction: A large scale experiment on data vs. domain vs. process[C]// Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering. 2009:91-100.
[7] TURHAN B, MENZIES T, BENER A B, et al. On the relative value of cross-company and within-company data for defect prediction[J]. Empirical Software Engineering, 2009,14(5):540-578.
[8] PETERS F, MENZIES T, MARCUS A. Better cross company defect prediction[C]// Proceedings of the 2013 10th Working Conference on Mining Software Repositories (MSR). 2013:409-418.
[9] 何吉元,孟昭鹏,陈翔,等. 一种半监督集成跨项目软件缺陷预测方法[J]. 软件学报, 2017,28(6):1455-1473.
[10] 陈曙,叶俊民,刘童. 一种基于领域适配的跨项目软件缺陷预测方法[J]. 软件学报, 2020,31(2):266-281.
[11] TONG H N, LIU B, WANG S H. Software defect prediction using stacked denoising autoencoders and two-stage ensemble learning[J]. Information and Software Technology, 2018,96:94-111.
[12] WANG S, LIU T Y, NAM J, et al. Deep semantic feature learning for software defect prediction[J]. IEEE Transactions on Software Engineering, 2020,46(12):1267-1293.
[13] LI J, HE P J, ZHU J M, et al. Software defect prediction via convolutional neural network[C]// Proceedings of the 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). 2017:318-328.
[14] 邱少健. 基于迁移学习的跨项目软件缺陷预测关键技术研究[D]. 广州:华南理工大学, 2019.
[15] DENG L, SELTZER M L, YU D, et al. Binary coding of speech spectrograms using a deep auto-encoder[C]// Proceedings of the 11th Annual Conference of the International Speech Communication Association. 2010:1692-1695.
[16] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]// Proceedings of the 25th International Conference on Machine Learning. 2008:1096-1103.
[17] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010,11:3371-3408.
[18] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]// Proceedings of the 19th International Conference on Neural Information Processing Systems. 2006:153-160.
[19] BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006,22(14):e49-e57.
[20] 简艺恒,余啸. 基于数据过采样和集成学习的软件缺陷数目预测方法[J]. 计算机应用, 2018,38(9):2637-2643.
[21] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011,22(2):199-210.
[22] NAM J, PAN S J, KIM S. Transfer defect learning[C]// Proceedings of the 2013 35th International Conference on Software Engineering (ICSE). 2013:382-391.
[23] D’AMBROS M, LANZA M, ROBBES R. Evaluating defect prediction approaches: A benchmark and an extensive comparison[J]. Empirical Software Engineering, 2012,17(4-5):531-577.
[24] PETERS F, MENZIES T. Privacy and utility for defect prediction: Experiments with MORPH[C]// Proceedings of the 2012 34th International Conference on Software Engineering (ICSE). 2012:189-199.
[25] WU R X, ZHANG H Y, KIM S, et al. Relink: Recovering links between bugs and changes[C]// Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering. 2011:15-25.
[26] D’AMBROS M, LANZA M, ROBBES R. An extensive comparison of bug prediction approaches[C]// Proceedings of the 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010). 2010:31-41.
[27] 李叶飞,官国飞,葛崇慧,等. FSDNP:针对软件缺陷数预测的特征选择方法[J]. 计算机工程与应用, 2019,55(14):61-68.