XIA Yi-chun, LI Wang-gen, LI Dou-dou, GE Ying-kui, WANG Zhi-ge. CTR Prediction Model Combining Attention Mechanism and Graph Neural Network[J]. Computer and Modernization, 2023, 0(03): 29-37.
[1] ZHAO X Y, WANG C, CHEN M, et al. AutoEmb: Automated embedding dimensionality search in streaming recommendations[J]. arXiv preprint arXiv:2002.11252, 2020.
[2] RENDLE S. Factorization machines[C]// The 10th IEEE International Conference on Data Mining. 2010:14-17.
[3] 陈彬,张荣梅,张琦. DCFM:基于深度学习的混合推荐模型[J]. 计算机工程与应用, 2021,57(3):150-155.
[4] 王瑞平,贾真,刘畅,等. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021,48(1):226-232.
[5] 王越,于莲芝. 一个以注意力机制结合隐式和显式的特征交叉的CTR预估模型[J]. 小型微型计算机系统, 2021,42(9):1884-1890.
[6] 邓路佳,刘平山. 基于GMM-FMs的广告点击率预测研究[J]. 计算机工程, 2019,45(5):122-126.
[7] 冯勇,韩晓龙,顾兆旭,等. 基于耦合CNN评分预测模型的个性化商品推荐[J]. 小型微型计算机系统, 2020,41(2):393-398.
[8] ZHANG W N, DU T M, WANG J. Deep learning over multi-field categorical data[C]// European Conference on Information Retrieval. 2016:45-57.
[9] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. 2016:7-10.
[10] XIAO J, YE H, HE X N, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks[J]. arXiv preprint arXiv:1708.04617, 2017.
[11] GUO H F, TANG R M, YE Y M, et al. DeepFM: A factorization-machine based neural network for CTR prediction[J]. arXiv preprint arXiv:1703.04247, 2017.
[12] LIAN J X, ZHOU X H, ZHANG F Z, et al. xDeepFM: Combining explicit and implicit feature interactions for recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018:1754-1763.
[13] HUANG T W, ZHANG Z Q, ZHANG J L. FiBiNET: Combining feature importance and bilinear feature interaction for click-through rate prediction[C]// Proceedings of the 13th ACM Conference on Recommender Systems. 2019:169-177.
[14] HU J, SHEN L, ALBANLE S. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017:6000-6010.
[16] SUN Y, PAN J W, ZHANG A, et al. FM2: Field-matrixed factorization machines for recommender systems[C]// Proceedings of the Web Conference 2021. 2021:2828-2837.
[17] YANG J, ZHANG D, FRANGI A F, et al. Two-dimensional PCA: A new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(1):131-137.
[18] ELSKEN T, METZEN J H, HUTTER F. Neural architecture search: A survey[J]. The Journal of Machine Learning Research, 2019,20(1):1997-2017.
[19] JOGLEKAR M R, LI C, CHEN M, et al. Neural input search for large scale recommendation models[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020:2387-2397.
[20] GINART A A, NAUMOV M, MUDIGERE D, t al. Mixed dimension embeddings with application to memory-efficient recommendation systems[C]// 2021 IEEE International Symposium on Information Theory (ISIT). 2021:2786-2791.
[21] MCMAHAN H B, HOLT G, SCULLEY D, et al. Ad click prediction: A view from the trenches[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2013:1222-1230.
[22] RENDLE S. Factorization machines with libfm[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2012,3(3):1-22.
[23] HE X, CHUA T S. Neural factorization machines for sparse predictive analytics[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017:355-364.
[24] WANG R X, FU B, FU G, et al. Deep & cross network for ad click predictions[C]// Proceedings of the ADKDD'17. 2017:1-7.
[25] LIU B, TANG R M, CHEN Y Z, et al. Feature generation by convolutional neural network for click-through rate prediction[C]// The World Wide Web Conference. 2019:1119-1129.
[26] SONG W P, SHI C C, XIAO Z P, et al. Autoint: Automatic feature interaction learning via self-attentive neural networks[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019:1161-1170.
[27] CHENG W Y, SHEN Y Y, HUANG L P. Adaptive factorization network: Learning adaptive-order feature interactions[J]. arXiv preprint arXiv:1909.03276, 2019.
[28] LI Z K, CUI Z Y, WU S, et al. Fi-GNN: Modeling feature interactions via graph neural networks for ctr prediction[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019:539-548.
[29] QU Y R, FANG B H, ZHANG W N, et al. Product-based neural networks for user response prediction over multi-field categorical data[J]. ACM Transactions on Information Systems (TOIS), 2018,37(1):1-35.
[30] SHAN Y, HOENS T R, JIAO J, et al. Deep crossing: Web-scale modeling without manually crafted combinatorial features[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016:255-262.
[31] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.