MA Yu-juan, HAN Jian-ning, SHI Shao-jie, CAO Shang-bin, YANG Zhi-xiu. Improved Kmeans Segmentation Algorithm for Brain Tumor Based on HMRF[J]. Computer and Modernization, 2023, 0(03): 1-5.
[1] 席欢欢,贺松,黄旭,等. 脑肿瘤MR图像分割方法现状及挑战[J]. 软件导刊, 2021,20(4):240-246.
[2] 张娜,魏伟,许新科,等. 儿童脑肿瘤切除术中大出血的危险因素分析[J]. 国际医药卫生导报, 2022,28(8):1099-1103.
[3] 程楠. 磁共振成像诊断脑部良恶性肿瘤40例价值分析[J]. 中国医药指南, 2017,15(31):84-85.
[4] 王丰斌. 基于AHLO与K均值聚类的图像分割算法[J]. 沈阳工业大学学报, 2019,41(4):427-432.
[5] 刘智杭,于鸣,任洪娥. 基于改进K均值聚类的葡萄果穗图像分割[J]. 江苏农业科学, 2018,46(24):239-244.
[6] DEBELEE T G, SCHWENKER F, RAHIMETO S, et al. Evaluation of modified adaptive K-means segmentation algorithm[J]. Computational Visual Media, 2019,5(4):347
-361.
[7] 魏木鑫,姚寒冰,周俊伟. 基于HMM的文本图像字符分割算法[J]. 武汉理工大学学报, 2018,40(9):89-95.
[8] LIU H J, SHIMA T, UEMURA S. A fast and fully automated HMM fitting algorithm enables accurate analysis of biophysical data with numerous states[J]. Biophysical Journal, 2021,120(3S1).
[9] 王志刚,冯云超. 基于MRF和混合核函数聚类的脑肿瘤图像分割方法[J]. 电子测量技术, 2021,44(8):93-97.
[10] SUMAN S, KUMAR D, KUMAR A. Study the effect of MRF model on fuzzy c means classifiers with different parameters and distance measures[J]. Journal of the Indian Society of Remote Sensing, 2022,50(7):1177-1189.
[11] EL-HACHEMI G, SAMY A A, DOMINIQUE M, et al. Hidden Markov random field model and Broyden-Fletcher-Goldfarb-Shanno algorithm for brain image segmentation[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2018,30(4):1-13.
[12] 胡忠超. 引入HMRF模型模糊聚类算法的遥感图像分类性能分析[J]. 科技资讯, 2019,17(20):33-35.
[13] YANG E, KANG D H, YUN T S. Ternary segmentation and estimation of permeability for porous rocks based on 3D X-ray computed tomographic images by hidden Markov random field and Brinkman-force lattice Boltzmann model[J]. Journal of Hydrology,2021,599. DOI:10.1016/j.jhydrol.2021.126377.
[14] NISHANT C. Generalisation of the Hammersley-Clifford theorem on bipartite graphs[J]. Transactions of the American Mathematical Society, 2017,369(10):7107-7137.
[15] KONG Y Y, LIU Y J, YAN B Y, et al. A novel deeplabv3+ network for SAR imagery semantic segmentation based on the potential energy loss function of gibbs distribution[J]. Remote Sensing, 2021,13(3):454.
[16] 标本,梁恺彬,管一弘. 高斯马尔可夫随机场的人脑MR图像分割方法[J]. 计算机技术与发展, 2017,27(7):180-184.
[17] 巫一舟. 在线EM算法及其在一类隐马尔科夫模型参数估计中的应用[D]. 大连:大连理工大学, 2021.
[18] WU W S, KHALIL A M. The discrete gaussian expectation maximization (gradient) algorithm for differential privacy[J]. Computational Intelligence and Neuroscience, 2021(1):1-13.
[19] 王飞. 线性回归模型中极大似然估计的若干性质[D]. 锦州:渤海大学, 2020.
[20] KIRKBY J L, NGUYEN D H, NGUYEN D, et al. Maximum likelihood estimation of diffusions by continuous time Markov chain[J]. Computational Statistics & Data Analysis,2022,168(C). DOI:10.1016/j.csda.2021.107408.
[21] MOHAMED C A, NOR I M. Distance based Kmeans clustering algorithm for determining number of clusters for high dimensional data[J]. Decision Science Letters,2020,9(1). DOI:10.5267/j.dsl.2019.8.002.
[22] 贾洪杰,王良君,宋和平. HMRF半监督近似核K-means算法[J]. 计算机科学, 2019,46(12):31-37.
[23] OUARDA S, SOUAD B. Euclidean distance versus manhattan distance for new representative SFA skin samples for human skin segmentation[J]. Traitement du Signal, 2021,38(6):1843-1851.
[24] WU Z H, SONG T T, ZHANG Y B. Quantum K-means algorithm based on Manhattan distance[J]. Quantum Information Processing, 2021,21(1):1025-1029.
[25] 毛鑫,蔡江辉,张素兰. 一种基于加权切比雪夫距离的图像分割方法[J]. 太原科技大学学报, 2020,41(6):449-455.
[26] GULTOM S, SRIADHI S, MARTIANO M, et al. Comparison analysis of K-Means and K-Medoid with ecluidience distance algorithm, chanberra distance, and chebyshev distance for big data clustering[J]. IOP Conference Series: Materials Science and Engineering,2018,420(1). DOI 10.1088/1757-899X/420/1/012092.
[27] HUANG K W, ZHAO Z Y, GONG Q, et al. Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy[C]// 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015:2968-2972.