Security Authentication Selection Mechanism for Resource-constrained NB-IoT Nodes
(1. School of Cryptography Engineering, University of Information Engineering, Zhengzhou 450001, China;
2. Zhicheng College, Fuzhou University, Fuzhou 350000, China)
LI Wei-qun, CHANG Chao-wen, LI Peng-jing. Security Authentication Selection Mechanism for Resource-constrained NB-IoT Nodes[J]. Computer and Modernization, 2023, 0(02): 104-109.
[1] ROTHWELL R. Towards the fifth-generation innovation process[J]. International Marketing Review, 1994,11(1):7-31.
[2] ASGHARI P, RAHMANI A M, JAVADI H H S. Internet of Things applications: A systematic review[J]. Computer Networks, 2018,148. DOI:10.1016/j.comnet.2018.12.008.
[3] MIGABO E M, DJOUANI K D, KURIEN A M. The narrowband Internet of Things (NB-IoT) resources management performance state of art, challenges, and opportunities[J]. IEEE Access, 2020,8:97658 - 97675.
[4] EBRAHIMI S, BAYAT-SARMADI S, MOSANAEI-BOORANI H. Post-quantum cryptoprocessors optimized for edge and resource-constrained devices in IoT[J]. IEEE Internet of Things Journal, 2019,6(3):5500-5507.
[5] KOUTSOS A. The 5G-AKA Authentication Protocol Privacy[C]// 2019 IEEE European Symposium on Security and Privacy (EuroS&P). 2019:464-479.
[6] CHEN Y W, WANG J T, CHI K H, et al. Group-based authentication and key agreement[J]. Wireless Personal Communications: An International Journal, 2012,62(4):965-979.
[7] LAI C Z, LI H, LI X Q, et al. A novel group access authentication and key agreement protocol for machine-type communication[J]. Transactions on Emerging Telecommunications Technologies, 2015,26(3):414-431.
[8] LAI C Z, LI H, LU R X, et al. SE-AKA: A secure and efficient group authentication and key agreement protocol for LTE networks[J]. Computer Networks, 2013,57(17):3492-3510.
[9] HARN L, HSU C. A novel design of membership authentication and group key establishment protocol[J]. Security and Communication Networks, 2017,2017:1-7.
[10] CAO J, YU P, MA M D, et al. Fast authentication and data transfer scheme for massive NB-IoT devices in 3GPP 5G network[J]. IEEE Internet of Things Journal, 2019,6(2):1561-1575.
[11] YU P, CAO J, MA M D, et al. Quantum-resistance authentication and data transmission scheme for NB-IoT in 3GPP 5G networks[C]// 2019 IEEE Wireless Communications and Networking Conference (WCNC). 2019:1-7.
[12] ZHANG Y H, REN F Y, WU A X, et al. Certificateless multi-party authenticated encryption for NB-IoT terminals in 5G Networks[J]. IEEE Access, 2019,7:114721-114730.
[13] BORMANN C E M K A. RFC 7228: Terminology for Constrained Node Networks[EB/OL]. (2014-05-01)[2022-02-03]. https://datatracker.ietf.org/doc/html/rfc7228.
[14] THAKOR V A, RAZZAQUE M A, KHANDAKER M R A. Lightweight cryptography algorithms for resource-Constrained IoT devices: A review, comparison and research opportunities[J]. IEEE Access,2021,9:28177-28193.
[15] HATZIVASILIS G, FYSARAKIS K, PAPAEFSTATHIOU I, et al. A review of lightweight block ciphers[J]. Journal of Cryptographic Engineering, 2018,8(2):141-184.
[16] MCKAY K A, BASSHAM L, TURAN M S, et al. Report on Lightweight Cryptography[R]. U.S. Department of Commerce, 2017.
[17] NAIK N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP[C]// 2017 IEEE International Systems Engineering Symposium (ISSE). 2017:1-7.
[18] 3GPP TS 33.102, 3G Security[S/OL]. [2022-03-02].https://www.3gpp.org/DynaReport/33102.htm.
[19] 3GPP TS 33.401, 3GPP System Architecture Evolution (SAE)[S/OL]. [2022-03-02]. https://www.3gpp.org/DynaReport/33401.htm.
[20] XIAO Y L, WU Y. 5G-IPAKA: An improved primary authentication and key agreement protocol for 5G Networks[J]. Information (Switzerland), 2022,13(3). DOI:10.3390/info13030125.
[21] LIU T, WU F, LI X, et al. A new authentication and key agreement protocol for 5G wireless networks[J]. Telecommunications Systems, 2021,78(3):317-329.
[22] MOGHADAM M F, NIKOOGHADAM M, JABBAN M A B A, et al. An efficient authentication and key agreement scheme based on ECDH for wireless sensor network[J]. IEEE Access, 2020,8:73182-73192.
[23] ALI S, ASHRAF H, KHAN I, et al. An efficient cryptographic technique using modified Diffie-Hellman in wireless sensor network[J]. International Journal of Distributed Sensor Networks, 2020,16(6):1-24.
[24] STRANGIO M A. Efficient Diffie-Hellmann two-party key agreement protocols based on elliptic curves[C]// Proceedings of the 2005 ACM symposium on Applied computing. 2005:324-331.
[25] MAXWELL G, POELSTRA A, SEURIN Y, et al. Simple Schnorr multi-signatures with applications to Bitcoin[J]. Designs, Codes and Cryptography,2019,87(9):2139-2164.
[26] KOVATSCH M, DUQUENNOY S, DUNKELS A. A low-power CoAP for Contiki[C]// 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems. 2011:855-860.
[27] DUNKELS A, GRONVALL B, VOIGT T. Contiki - a lightweight and flexible operating system for tiny networked sensors[C]// 29th Annual IEEE International Conference on Local Computer Networks. 2004:455-462.
[28] BHATTACHARJYA A, ZHONG X, WANG J, et al. CoAP—Application layer connection-less lightweight protocol for the Internet of Things (IoT) and CoAP-IPSEC Security with DTLS Supporting CoAP[M]// Digital Twin Technologies and Smart Cities. Cham: Springer International Publishing, 2019:151-175.
[29] 常相茂,占俊,王志伟. 低开销的NB-IoT节点群组身份安全认证协议[J]. 通信学报, 2021,42(12):152-162.
[30] 马国峻,白磊,裴庆祺,等. 一种物联网端到端安全方案[J]. 信息网络安全, 2017(10):13-21.