SAR Ship Classification Based on Multi-convolutional Neural Network Fusion
(1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
ZHANG Xiao, LYU Ji-yu, ZHAO Shuang, WU Yu-lun, WANG Chun-le. SAR Ship Classification Based on Multi-convolutional Neural Network Fusion[J]. Computer and Modernization, 2023, 0(01): 37-42.
[1] 邓云凯,禹卫东,张衡,等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020,9(1):1-33.
[2] 邹浩,林赟,洪文. 基于多角度合成SAR图像的目标识别性能分析[J]. 中国科学院大学学报, 2019,36(2):226-234.
[3] RAJ J A, IDICULA S M, PAUL B. A novel ship detection method from SAR image with reduced false alarm[J]. Journal of Physics Conference Series, 2021,1817(1). DOI:10.
1088/1742-6596/1817/1/012010.
[4] SHARIFZADEH F, AKBARIZADEH G, KAVIAN Y S. Ship classification in SAR images using a new hybrid CNN-MLP classifier[J]. Journal of the Indian Society of Remote Sensing, 2019,47(4):551-562.
[5] 孙忠镇,熊博莅,冷祥光,等. 基于精细分割的SAR图像舰船目标几何结构特征提取[J]. 电波科学学报, 2020,35(4):585-593.
[6] KNAPSKOG A O, BROVOLL S, TORVIK B. Characteristics of ships in harbour investigated in simultaneous images from TerraSAR-X and PicoSAR[C]// 2010 IEEE Radar Conference. 2010:422-427.
[7] LENG X G, JI K F, ZHOU S L, et al. 2D comb feature for analysis of ship classification in high resolution SAR imagery[J]. Electronics Letters, 2017,53(7):500-502.
[8] 贾程澄,王军,邱峰. 多特征提取和多核SVM 的舰船目标识别方法[J]. 电光与控制, 2021,28 (11):106-111.
[9] 张晓,王莉莉. 基于多分类器融合的卫星图像舰船目标识别[J]. 通信技术, 2019,52(9):2143-2148.
[10] XUE R H, BAI X R, ZHOU F. Spatial-temporal ensemble convolution for sequence SAR target classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,59(2):1250-1262.
[11] WANG L, BAI X R, XUE R H, et al. Few-shot SAR automatic target recognition based on Conv-BiLSTM prototypical network[J]. Neurocomputing, 2021,443(1): 235-246.
[12] HUANG L Q, LIU B, LI B Y, et al. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(1):195-208.
[13] HOU X Y, AO W, XU F. End-to-end automatic ship detection and recognition in high-resolution Gaofen-3 spaceborne SAR images [C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. 2019:9486-9489.
[14] HOU X Y, AO W, SONG Q, et al. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition [J]. Science China Information Sciences volume, 2020,63(4):36-54.
[15] BENTES C, VELOTTO D, TINGS B. Ship classification in TerraSAR-X images with convolutional neural networks[J]. IEEE Journal of Oceanic Engineering, 2018,43(1):258-266.
[16] WU Y X, YUAN Y, GUAN J, et al. Joint convolutional neural network for small-scale ship classification in SAR images[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. 2019:2619-2622.
[17] HE J L, WANG Y H, LIU H W. Ship classification in medium-resolution SAR Images via densely connected triplet CNNs integrating fisher discrimination regularized metric learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,59(4):3022-3039.
[18] ZHANG T W, ZHANG X L, KE X, et al. HOG-ShipCLSNet: A novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,60(1):1-22.
[19] XU Y J, LANG H T. Ship classification in SAR images with geometric transfer metric learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,59 (8):6799-6813.
[20] LU C C, LI W H. Ship classification in high-resolution SAR images via transfer learning with small training dataset[J]. Sensors, 2018,19(1):63.
[21] WANG Y Y, WANG C, ZHANG H. Ship classification in high-resolution SAR images using deep learning of small datasets[J]. Sensors, 2018,18(9):2929.
[22] ZHANG D, LIU J, HENG W, et al. Transfer learning with convolutional neural networks for SAR ship recognition[J]. IOP Conference, 2018,322(7):248-260.
[23] 张梦雨. 基于ResNet和注意力机制的花卉识别[J]. 计算机与现代化, 2021 (4):61-67.
[24] DONG Y B, ZHANG H, WANG C, et al. Fine-grained ship classification based on deep residual learning for high-resolution SAR images[J]. Remote Sensing Letters, 2019,10 (11): 1095-1104.
[25] SANDLER M, HOWARD A, ZHU M L, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:4510-4520.
[26] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.
[27] ZHANG C B, JIANG P T, HOU Q B, et al. Delving deep into label smoothing[J]. IEEE Transactions on Image Processing, 2021,30:5984-5996.
[28] WEI Y X, LIU Q X, ZHANG G X, et al. Label smoothing technique for ordinal classification in cloud assessment[C]// IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. 2020: 2264-2267.
[29] 冯泽安,王鹏. 基于多分类模型加权投票法的人脸微笑检测[J]. 计算机技术与发展, 2019,29(2):81-86.
[30] 李佳,郭剑毅,刘艳超,等. 基于多分类器加权投票法的越南语组合歧义消歧[J]. 计算机科学, 2018,45(1):167-172.
[31] CUI Y, ZHOU G Y, YANG J Y, et al. On the iterative censoring for target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(4):641-645.
[32] MA N N, ZHANG X Y, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]// Proceedings of the European Conference on Computer Vision (ECCV). 2018:122-138.
[33] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2261-2269.