WANG Yong-di, LEI Gang. Chinese Short Text Entity Disambiguation Based on Multi-feature Factor Fusion[J]. Computer and Modernization, 2023, 0(01): 30-36.
[1] BLANCO R, OTTAVIANO G, MEIJ E. Fast and space-efficient entity linking for queries[C]// Proceedings of the 8th ACM International Conference on Web Search and Data Mining. 2015:179-188.
[2] DAS R, ZAHEER M, REDDY S, et al. Question answering on knowledge bases and text using universal schema and memory networks[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. 2017:358-365.
[3] DREDZE M, MCNAMEE P, RAO D, et al. Entity disambiguation for knowledge base population[C]// Proceedings of the 23rd International Conference on Computational Linguistics. 2010:277-285.
[4] ZHAO Y, WANG Y, YANG N. Chinese short text entity linking based on semantic similarity and entity correlation[C]// 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence. 2020:426-431.
[5] FRANCIS-LANDAU M, DURRETT G, LEIN D. Capturing semantic similarity for entity linking with convolutional neural networks[J]. arXiv preprint arXiv:1604.00734, 2016.
[6] HAN X P,SUN L. A generative entity-mention model for linking entities with knowledge base[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011: 945-954.
[7] 王瑞,李弼程,杜文倩. 基于上下文词向量和主题模型的实体消歧方法[J]. 中文信息学报, 2019, 33(11): 46-56.
[8] RAIMAN J, RAIMAN O. Deeptype: Multilingual entity linking by neural type system evolution[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2018:5406-5413.
[9] YIN X Y, HUANG Y, ZHOU B, et al. Deep entity linking via eliminating semantic ambiguity with BERT[J]. IEEE Access, 2019,7:169434-169445.
[10] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[11] GANEA O E, HOFMANN T. Deep joint entity disambiguation with local neural attention[J]. arXiv preprint arXiv:1704.04920, 2017.
[12] 范鹏程,沈英汉,许洪波,等. 融合实体知识描述的实体联合消歧方法[J]. 中文信息学报, 2020,34(7):42-49.
[13] LIU C, LI F, SUN X, et al. Attention-based joint entity linking with entity embedding[J]. Information, 2019,10(2): 46. DOI: 10.3390/info10020046.
[14] HAN X P, SUN L, ZHAO J. Collective entity linking in web text: A graph-based method[C]// Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2011:765-774.
[15] XUE M G, CAI W M, SU J S, et al. Neural collective entity linking based on recurrent random walk network learning[J]. arXiv preprint arXiv:1906.09320, 2019.
[16] YANG X Y, GU X T, LIN S, et al. Learning dynamic context augmentation for global entity linking[J]. arXiv preprint arXiv:1909.02117, 2019.
[17] PHAN M C, SUN A, TAY Y, et al. Pair-linking for collective entity disambiguation: Two could be better than all[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,31(7):1383-1396.
[18] CHEN S, WANG J P, JIANG F, et al. Improving entity linking by modeling latent entity type information[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(5):7529-7537.
[19] 冯冲,石戈,郭宇航,等. 基于词向量语义分类的微博实体链接方法[J]. 自动化学报, 2016,42(6):915-922.
[20] 毛二松,王波,唐永旺,等. 基于词向量的中文微博实体链接方法[J]. 计算机应用与软件, 2017,34(4):11-15.
[21] HUANG K, CHEN X Y, WANG P. An entity linking approach for Chinese microblog[C]// 2014 International Conference on Multimedia Computing and Systems. 2014: 517-522.
[22] FU J L, QIU J, GUO Y L, et al. Entity linking and name disambiguation using SVM in chinese micro-blogs[C]// 2015 11th International Conference on Natural Computation. 2015:468-472.
[23] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[24] ZENG W X, TANG J Y, ZHAO X. Entity linking on Chinese microblogs via deep neural network[J]. IEEE Access, 2018,6:25908-25920.
[25] JIANG L T, ALTENBEK G, WU D, et al. Chinese short text entity disambiguation based on the dual-channel hybrid network[J]. IEEE Access, 2020,8:206164-206173.
[26] 张晟旗,王元龙,李茹,等. 基于局部注意力机制的中文短文本实体链接[J]. 2021,47(11):77-83.
[27] 祝凯华,戴安南,范雪丽. 多因子融合的实体识别与链指消歧[C]// CCKS2019评测论文集. 2019.
[28] 吕荣荣,王鹏程,陈帅. 面向中文短文本的多因子融合实体链指研究[EB/OL]. (2020-10-05)[2022-01-25]. https://bj.
bcebos.com/v1/conference/ccks2020/eval_paper/ccks2020_
eval_paper_2_1.pdf.
[29] SUN Y, WANG S H, LI Y K, et al. Ernie: Enhanced representation through knowledge integration[J]. arXiv preprint arXiv:1904.09223, 2019.
[30] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
[31] MIYATO T, DAI A M, GOODFELLOW I. Adversarial training methods for semi-supervised text classification[J]. arXiv preprint arXiv:1605.07725, 2016.
[32] YAN Y M, LI R M, WANG S R, et al. ConSERT: A contrastive framework for self-supervised sentence representation transfer[J]. arXiv preprint arXiv:2105.11741, 2021.