Computer and Modernization ›› 2022, Vol. 0 ›› Issue (12): 67-73.
Previous Articles Next Articles
Online:
2023-01-04
Published:
2023-01-04
WU Zhi-ping, MA Yao-bin, TANG Wen-chao, HU Bi-wei, HU Bi-wei, LIU Ming-jia. Multispectral Image Classification Based on Context-aware and Super-pixel Post-processing[J]. Computer and Modernization, 2022, 0(12): 67-73.
[1] | WANG L, ZHENG C, DAI Q, et al. A comparative study of pixel level and region level classification of land use types using QuickBird imagery[C]// 2010 2nd IITA International Conference on Geoscience and Remote Sensing. 2010:219-222. |
[2] | ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282. |
[3] | GIRAUD R, TA V, BUGEAU A, et al. SuperPatchMatch: An algorithm for robust correspondences using superpixel patches[J]. IEEE Transactions on Image Processing, 2017,26(8):4068-4078. |
[4] | ZHAO W, JIAO L, MA W, et al. Superpixel-based multiple local CNN for panchromatic and multispectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(7):4141-4156. |
[5] | LI G, LI L, ZHU H, et al. Adaptive multiscale deep fusion residual network for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(11):8506-8521. |
[6] | HE Z, SHI Q, LIU K, et al. Object-oriented mangrove species classification using hyperspectral data and 3-D siamese residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2020,17(12):2150-2154. |
[7] | MARINONI A, GAMBA P. Unsupervised data driven feature extraction by means of mutual information maximization[J]. IEEE Transactions on Computational Imaging, 2017,3(2):243-253. |
[8] | HUANG S, ZHANG H, PIURICA A. Hybrid-hypergraph regularized multiview subspace clustering for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60. DOI:10.1109/TGRS.2021.3074184. |
[9] | BREIMAN L, FRIEDMAN J H, OLSHEN R, et al. Classification and Regression Trees (CART)[M]. Wiley, 1984. DOI:10.2307/2530946. |
[10] | BREIMAN L. Random forests[J]. Machine Learning, 2001,45:5-32. |
[11] | LI T, ZHANG J, ZHANG Y. Classification of hyperspectral image based on deep belief networks[C]// 2014 IEEE International Conference on Image Processing (ICIP). 2014:5132-5136. |
[12] | ZHONG P, GONG Z, LI S, et al. Learning to diversify deep belief networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(6):3516-3530. |
[13] | CHEN Y, LIN Z, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6):2094-2107. |
[14] | XING C, MA L, YANG X. Stacked denoise autoencoder based feature extraction and classification for hyperspectral images[J]. Journal of Sensors, 2016. DOI:10.1155/2016/3632943. |
[15] | ZHAO C, WAN X, ZHAO G, et al. Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest[J]. European Journal of Remote Sensing, 2017,50(1):47-63. |
[16] | MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(2):645-657. |
[17] | JIAO L, LIANG M, CHEN H, et al. Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(10):5585-5599.〖HJ0.8mm〗 |
[18] | JI S, ZHANG C, XU A, et al. 3D convolutional neural networks for crop classification with multi-temporal remote sensing images[J]. Remote Sensing, 2018,10(1). DOI:10.3390/rs10010075. |
[19] | LIU X, JIAO L C, ZHAO J Q, et al. Deep multiple instance learning-based spatial-spectral classification for PAN and MS imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(1):461-473. |
[20] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778. |
[21] | CHAURASIA A, CULURCIELLO E. LinkNet: Exploiting encoder representations for efficient semantic segmentation[C]// 2017 IEEE Visual Communications and Image Processing (VCIP). 2017. DOI:10.1109/VCIP.2017.8305148. |
[22] | MIRZAPOUR F, GHASSEMIAN H. Object-based multispectral image segmentation and classification[C]// The 7th International Symposium on Telecommunications (IST'2014). 2014:430-435. |
[23] | LIANG W, WU Y, LI M, et al. High-resolution SAR image classification using context-aware encoder network and hybrid conditional random field model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(8):5317-5335. |
[24] | GU Z, CHENG J, FU H, et al. CE-Net: Context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019,38(10):2281-2292. |
[25] | HU Z, ZHANG Q, ZOU Q, et al. Stepwise evolution analysis of the region-merging segmentation for scale parameterization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(7):2461-2472. |
[26] | HU Z, SHI T, WANG C, et al. Scale-sets image classification with hierarchical sample enriching and automatic scale selection[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,105(4). DOI:10.1016/j.jag.2021.102605. |
[27] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[R]. Google Research, 2014. |
[28] | ZHONG Z, LI J, LUO Z, et al. Spectral-spatial residual network for hyperspectral image classification: A 3-D Deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(2):847-858. |
[29] | HUANG Y, WEI J, TANG W, et al. Pyramid convolutional neural networks and bottleneck residual modules for classification of multispectral images[C]// IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. 2020:1949-1952. |
[1] | YANG Zhen, SHAN Meng-jiao, YIN Zhi-jian, YANG Fan, LI Cui-mei. Fine-grained Image Classification via Channel Adaptive Discriminative Learning [J]. Computer and Modernization, 2022, 0(10): 68-74. |
[2] | HUANG Yan-hui, LAN Hai, WEI Xian. Lightweight Vision Transformer Based on Separable Structured Transformations [J]. Computer and Modernization, 2022, 0(10): 75-81. |
[3] | WANG Pan-hong, ZHU Chang-ming. Multi-label Image Classification Method Combined CNN and Interactive Features [J]. Computer and Modernization, 2022, 0(09): 85-92. |
[4] | ZHANG Lin-peng, WANG Xi-yuan, LI Qiang. Image Classification Based on Double-pooling Feature Weighted Convolutional Neural Network [J]. Computer and Modernization, 2021, 0(11): 67-71. |
[5] | LI Xiao-shuang, HAN Li-xin, LI Jing-xian, ZHOU Jing-wei. Multi-modal Music Emotion Classification Based on Optimized Residual Network [J]. Computer and Modernization, 2020, 0(12): 83-89. |
[6] | LI Xi-ming, MA Li-xiao, ZENG Xiao-yin, WANG Xuan, SUN Jian, GUO Yu-bin. A High Precision Microporous Plate Turbidity Identification Network [J]. Computer and Modernization, 2020, 0(10): 58-63. |
[7] | ZHAO Xiao-lei1, XU Xi-bin2. Optimized Image Classification Method by Double Entropy Fast Extraction ROI [J]. Computer and Modernization, 2019, 0(02): 31-. |
[8] | ZHANG Xiao-feng, LIU Hong-zheng. Flower Image Classification Based on Convolutional Neural Network [J]. Computer and Modernization, 2018, 0(09): 52-. |
[9] | LI Zheng-ming1,2, YANG Nan-yue1. Dictionary Learning Algorithm Based on Label Consistent and Locality Constraint [J]. Computer and Modernization, 2017, 0(6): 56-60. |
[10] | LIU Wei. Land-use Classification Method Based on Landsat8 OLI Images [J]. Computer and Modernization, 2015, 0(9): 13-16,21. |
[11] | FAN Yindi. Image Classification Method Based on Distribution Structure Constrain Sparse Representation [J]. Computer and Modernization, 2015, 0(7): 73-. |
[12] | WU Hai-yan, ZHANG Chen-chen . A MAD-based Robust Fractal Dimension Calculating Method and Its Application in Image Recognition [J]. Computer and Modernization, 2013, 12(12): 102-105. |
[13] | YU Bin;LI Hai-bo. Design and Implementation of Collection and Management System for House Property Tax and Land Use Tax [J]. Computer and Modernization, 2012, 1(6): 73-76. |
[14] | LI Chang-chun;MAO Ya-ming;SUN Hao;SHEN Li. [J]. Computer and Modernization, 2010, 1(3): 7-5. |
[15] | MENG Hai-dong;HAO Yong-kuan;WANG Shu-ling. Application Research on Clustering Analysis in Unsupervised Image Classification [J]. Computer and Modernization, 2009, 1(10): 88-4. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||