[1] 马庆吉. 基于改进灰狼算法的柔性作业车间调度方法研究[D]. 武汉:华中科技大学, 2019.
[2] PANWALKAR S S, ISKANDER W. A survey of scheduling rules[J]. Operations Research, 1977, 25(1):45-61.
[3] 田云娜,李冬妮,刘兆赫,等. 一种基于动态决策块的超启发式跨单元调度方法[J].自动化学报, 2016,42(4):524-534.
[4] DAVIS L. Handbook of Genetic Algorithms[M]. New York: Van Nostrand Reinhold, 1991.
[5] SAWICKI J, LOS M, SMOLKA M, et al. Using covariance matrix adaptation evolutionary strategy to boost the search accuracy in hierarchic memetic computations[J]. Journal of Computational Science, 2019,34:48-54.
[6] BRUNS R, DUNKEL J, OFFEL N.Learning of complex event processing rules with genetic programming[J]. Expert Systems with Applications,2019,129:186-199.
[7] DORIGO M, GAMBARDELLA L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1):53-66.
[8] KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008,8(1):687-697.
[9] MIRJALILI S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015,89:228-249.
[10]董蓉,何卫平. 求解FJSP的混合遗传—蚁群算法[J]. 计算机集成制造系统, 2012,18(11):2492-2501.
[11]贾兆红,朱建建,陈华平. 柔性作业车间调度的动态禁忌粒子群优化算法[J]. 华南理工大学学报(自然科学版), 2012,40(1):69-76.
[12]李俊萱,王艳,纪志成. 基于混合QPSO的模糊柔性作业车间调度问题研究[J].系统仿真学报, 2020,32(10):2010-2021.
[13]郑小操,龚文引. 改进人工蜂群算法求解模糊柔性作业车间调度问题[J]. 控制理论与应用, 2020,37(6):1284-1292.
[14]CALDEIRA R H, GNANAVELBABU A. A Pareto based discrete Jaya algorithm for multi-objective flexible job shop scheduling problem[J]. Expert Systems with Applications, 2021,170:114567.1-114567.20.
[15]MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014,69: 46-61.
[16]姜天华. 混合灰狼优化算法求解柔性作业车间调度问题[J]. 控制与决策, 2018,33(3):503-508.
[17]LU C, XIAO S Q, LI X Y, et al. An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production[J]. Advances in Engineering Software, 2016,99:161-176.
[18]KOMAKI G M, KAYVANFAR V. Grey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time[J]. Journal of Computational Science, 2015,8:109-120.
[19]吴虎胜,张凤鸣,吴庐山. 一种新的群体智能算法——狼群算法[J]. 系统工程与电子技术, 2013,35(11):2430-2438.
[20]BRANDIMARTE P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993,41(1-4):157-183.
[21]KACEM I, HAMMADI S, BORNE P. Approach by localization and multi objective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2002,32(1):1-13.
[22]谢瑞强,张慧珍. 求解置换流水车间调度的离散狼群算法[J]. 控制工程, 2020,27(2): 288-296.
[23]JIANG T H, ZHANG C. Application of grey wolf optimization for solving combinatorial problems: Job shop and flexible job shop scheduling cases[J]. IEEE Access, 2018,6:26231-26240.
[24]WANG Y, SONG Y C, ZOU Y J, et al. A hybrid grey wolf weed algorithm for flexible job-shop scheduling problem[J]. Journal of Physics: Conference Series, 2021,1828(1). DOI: 10.1088/1742-6596/1828/1/012162.
[25]NOUIRI M, BEKRAR A, JEMAI A, et al. An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem[J]. Journal of Intelligent Manufacturing, 2018,29(3):603-615.
[26]HENCHIRI A, ENNIGROU M. Particle swarm optimization combined with tabu search in a multi-agent model for flexible job shop problem[C]// 2013 Advances in Swarm Intelligence. 2013:385-394.
[27]ZIAEE M. A heuristic algorithm for solving flexible job shop scheduling problem[J]. International Journal of Advanced Manufacturing Technology, 2014,71(1-4):519-528.
[28]WANG L, ZHOU G, XU Y, et al. An effective artificial bee colony algorithm for the flexible job-shop scheduling problem[J]. International Journal of Advanced Manufacturing Technology, 2012,60(1-4):303-315.
|