[1]吴波. 基于心电信号的身份识别与心律失常识别方法研究[D]. 济南:山东大学, 2019.
[2]WANG T, LU C H, SUN Y N, et al. Automatic ECG classification using continuous wavelet transform and convolutional neural network[J]. Entropy, 2021,23(1). DOI: 10.3390/e23010119.
[3]马金伟,刘盛平. 心电信号识别分类算法综述[J]. 重庆理工大学学报(自然科学), 2018,32(12):122-128.
[4]侯晓晴,仝泽友,刘晓文. 基于改进小波变换的QRS特征提取算法研究[J]. 现代电子技术, 2020,43(13):57-61.
[5]王超超,彭勇,廖毅,等. ECG信号改进阈值函数小波去噪算法研究[J]. 电子技术与软件工程, 2020(1):74-75.
[6]XU B X. Application of ECG signal denoising and T-wave automatic detection based on computer deep learning[J]. Journal of Physics: Conference Series, 2020,1578(1). DOI: 10.1088/1742-6596/1578/1/012007.
[7]宋莉,孟庆建,张光玉,等. 基于波形特征和SVM的心电信号自动分类方法研究[J]. 中国医学物理学杂志, 2010,27(4):2043-2046.
[8]吴志勇,丁香乾,许晓伟,等. 基于深度学习和模糊C均值的心电信号分类方法[J]. 自动化学报, 2018,44(10):1913-1920.
[9]陶亮,刘宝宁,梁玮. 基于CNN-LSTM混合模型的心律失常自动检测[J]. 山东大学学报(工学版), 2021,51(3):30-36.
[10]叶思超,徐晨华,乔清理. 基于残差网络融合模型的心律失常分类研究[J]. 陕西师范大学学报(自然科学版), 2020,48(6):10-17.
[11]MOODY G B, MARK R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE Engineering in Medicine and Biology Magazine, 2001,20(3):45-50.
[12]BLANCO-VELASCO M, WENG B W, BARNER K E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition[J]. Computers in Biology and Medicine, 2008,38(1):1-13.
[13]卢莉蓉,王鉴,牛晓东. 基于VMD和小波阈值的ECG肌电干扰去噪处理[J]. 传感技术学报, 2020,33(6):867-873.
[14]LIN Y D, HU Y H. Power-line interference detection and suppression in ECG signal processing[J]. IEEE Transactions on Biomedical Engineering, 2008,55(1):354-357.
[15]AL-SALMAN W, LI Y, WEN P. Detecting sleep spindles in EEGs using wavelet fourier analysis and statistical features[J]. Biomedical Signal Processing and Control, 2019,48:80-92.
[16]KUMNGERN M, AUPITHAK N, KHATEB F, et al. 0.5 V fifth-order Butterworth low-pass filter using multiple-input OTA for ECG applications[J]. Sensors, 2020,20(24). DOI: 10.3390/s20247343.
[17]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[18]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[19]ARORA S, BHASKARA A, GE R, et al. Provable bounds for learning some deep representations[C]// Proceedings of the 31st International Conference on Machine Learning. 2014,1:883-891.
[20]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[21]YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.
[22]李楠,蔡坚勇,李科,等. 基于多Inception结构的卷积神经网络人脸识别算法[J]. 计算机系统应用, 2020,29(2):157-162.
[23]MULVEY J M, RUSZCZYNSKI A. A new scenario decomposition method for large-scale stochastic optimization[J]. Operations Research, 1995,43(3):477-490.
[24]刘光达,周葛,董梦坤,等. 基于FFNN和1D-CNN的实时心律失常诊断系统与算法[J]. 电子测量与仪器学报, 2021,35(3):35-42.
[25]ZHAI X L, TIN C. Automated ECG classification using dual heartbeat coupling based on convolutional neural network[J]. IEEE Access, 2018,6:27465-27472.
[26]杨淑莹,桂彬彬,陈胜勇. 基于小波分解和1D-GoogLeNet的心律失常检测[J]. 电子与信息学报, 2021,43(10):3018-3027.
[27]李兴秀,唐建军,华晶. 结合CNN与双向LSTM的心律失常分类[J]. 计算机科学与探索, 2021,15(12):2353-2361.
[28]NEELA T, NAMBURU S. ECG signal classification using capsule neural networks[J]. IET Networks, 2021,10(3):103-109.
|