[1] 田丽丽,方宗德,赵勇. 铁路货车车轮踏面伤损检测中剥离与擦伤定位方法[J]. 铁道学报, 2009,31(5):31-36.
[2] HO T K, LIU S Y, HO Y T, et al. Signature analysis on wheel-rail interaction for rail defect detection[C]// 2008 4th IET International Conference on Railway Condition Monitoring. 2008. DOI:10.1049/ic:20080342.
[3] YUE J H, QIU Z D, CHEN B S. Application of wavelet transform to defect detection of wheelflats of railway wheels[C]// The 6th International Conference on Signal Processing. 2002,1:29-32.
[4] KINGSBURY N. Image processing with complex wavelets[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1999,357(1760):2543-2560.
[5] TUCERYAN M, JAIN A K. Texture analysis[M]// Handbook of Pattern Recognition and Computer Vision. 1998:207-248.
[6] 刘尚昆. 基于图像处理的轮对擦伤在线检测系统的研究[D]. 北京:北京交通大学, 2019.
[7] 张志腾. 基于图像处理的列车车轮踏面损伤的识别研究[D]. 兰州:兰州交通大学, 2018.
[8] 杨颖,田裕鹏,刘虹丹,等. 基于图像纹理分析的车轮踏面擦伤检测[C]// 2016远东无损检测新技术论坛会议论文集. 2016:597-602.
[9] 陈凤萍,齐建华. 旋转不变纹理特征在图像模式识别中应用仿真[J]. 计算机仿真, 2019,36(2):353-356.
[10]刘莹. 图像纹理的特征提取和分类方法研究[D]. 武汉:华中科技大学, 2013.
[11]OUSLIMANI F, OUSLIMANI A, AMEUR Z. Rotation-invariant features based on directional coding for texture classification[J]. Neural Computing & Applications, 2019,31(10):6393-6400.
[12]LIAO B, PENG F. Rotation-invariant texture features extraction using dual-tree complex wavelet transform[C]// 2010 International Conference on Information, Networking & Automation. 2010,1:361-364.
[13]KINGSBURY N. The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters[C]// 1998 IEEE Digital Signal Processing Workshop(DSP). 1998.
[14]ZHANG Z, JIANG R Q, MEI S H, et al. Rotation-invariant feature learning for object detection in VHR optical remote sensing images by double-net[J]. IEEE Access, 2019,8:20818-20827.
[15]LIU Y, YAN H Y, LIM K P. Study on rotation-invariant texture feature extraction for tire pattern retrieval[J]. Multidimensional Systems and Signal Processing, 2017,28(2):757-770.
[16]杨丹,赵海滨,龙哲,等. MATLAB图像处理实例详解[M]. 北京:清华大学出版社, 2013.
[17]郑碧波,陈伟清,田配云. 基于Radon变换和EMD的旋转不变纹理分类[J]. 计算机与现代化, 2013(6):67-70.
[18]关永洪. 基于非抽样轮廓波变换和矩阵F-范数的旋转不变纹理图像检索方法[J]. 计算机与现代化, 2013(9):95-97.
[19]SELESNICK I W, BARANIUK R G, KINSBURY N G. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005,22(6):123-151.
[20]FERAIDOONI M M, GHARAVIAN D. A new approach for rotation-invariant and noise-resistant texture analysis and classification[J]. Machine Vision and Applications, 2018,29(3):455-466.
[21]宋怡焕,饶秀勤,应义斌. 基于DT-CWT和LS-SVM的苹果果梗/花萼和缺陷识别[J]. 农业工程学报, 2012,28(9):114-118.
[22]蒋金山,余英林. 用支持向量机实现尺度和旋转不变性纹理分类[J]. 华南理工大学学报(自然科学版), 2004,32(5):26-29.
[23]解洪胜,张虹,徐秀. SVM和DT-CWT的纹理图像分类方法研究[J]. 中国矿业大学学报, 2007,36(6):773-778.
[24]解洪胜,张虹. 基于支持向量机的图像纹理识别方法[J]. 山东大学学报(工学版), 2006,36(6):95-99.
|