[1] 刘凤之,王昆,曹玉芬,等. 我国苹果种质资源研究现状与展望[J]. 果树学报, 2006,23(6):865-870.
[2] 王洪煜,张复宏,宋晓丽. 我国苹果生产现状与经济效益分析[J]. 对外经贸, 2017(10):93-96.
[3] 慕海涛. 中国苹果产业发展现状及趋势探究[J]. 农村科学实验, 2019(9):75.
[4] GitHub. Neural Nets[DB/OL]. (2017-07-28)[2021-03-09]. http://jhirniak.github.io/neural_nets/.
[5] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.
[6] 龚丁禧,曹长荣. 基于卷积神经网络的植物叶片分类[J]. 计算机与现代化, 2014(4):12-15.
[7] 翁杨,曾睿,吴陈铭,等. 基于深度学习的农业植物表型研究综述[J]. 中国科学:生命科学, 2019,49(6):698-716.
[8] 唐泽民. 基于卷积神经网络的图像识别技术研究[D]. 苏州:苏州大学, 2020.
[9] 薄琪苇. 基于卷积神经网络的植物叶片识别研究[D]. 杭州:浙江农林大学, 2017.
[10]林君宇,李奕萱,郑聪尉,等. 应用卷积神经网络识别花卉及其病症[J]. 小型微型计算机系统, 2019,40(6):1330-1335.
[11]袁培森,黎薇,任守纲,等. 基于卷积神经网络的菊花花型和品种识别[J]. 农业工程学报, 2018,34(5):152-158.
[12]BACKES A R, CASANOVA D, BRUNO O M. A complex network-based approach for boundary shape analysis[J]. Pattern Recognition, 2009,42(1):54-67.
[13]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// 2012 International Conference on Neural Information Processing Systems. 2012:1097-1105.
[14]MOHANTY S P, HUGHES D P, SALATHE M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016,7. DOI: 10.3389/fpls.2016.01419.
[15]CARPENTIER M, GIGUERE P, GAUDREAULT J. Tree species identification from bark images using convolutional neural networks[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2018:1075-1081.
[16]包俊,董亚超,刘宏哲. 卷积神经网络的发展综述[C]// 中国计算机用户协会网络应用分会2020年第24届网络新技术与应用年会论文集. 2020: 10-15.
[17]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[18]刘健,袁谦,吴广,等. 卷积神经网络综述[J]. 计算机时代, 2018(11):19-23.
[19]章琳,袁非牛,张文睿,等. 全卷积神经网络研究综述[J]. 计算机工程与应用, 2020,56(1):25-37.
[20]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6):1229-1251.
[21]NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning. 2010:807-814.
[22]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014,15:1929-1958.
[23]高旋,赵亚凤,熊强,等. 基于迁移学习的树种识别[J]. 森林工程, 2019,35(5):68-75.
[24]SUN Y, ZHU L, WANG G, et al. Multi-input convolutional neural network for flower grading[J]. Journal of Electrical and Computer Engineering, 2017. DOI 10.1155/2017/9240407.1
[25]李茂莹,杨柳,胡清华. 同构迁移学习理论和算法研究进展[J]. 南京信息工程大学学报(自然科学版), 2019,11(3):269-277.
[26]吕昊远,俞璐,周星宇,等. 半监督深度学习图像分类方法研究综述[J/OL]. 计算机科学与探索:1-13[2021-03-25]. http://kns.cnki.net/kcms/detail/11.5602.TP.20210322.1303.004.html.
[27]LONG M S, ZHU H, WANG J M, et al. Deep transfer learning with joint adaptation networks[C]// The 34th International Conference on Machine Learning. 2017:2208-2217.
|