[1] 宫丽娜,姜淑娟,姜丽. 软件缺陷预测技术研究进展[J]. 软件学报, 2019,30(10):3090-3114.
[2] PAN C, LU M Y, XU B, et al. An improved CNN model for within-project software defect prediction[J]. Applied Sciences, 2019,9(10). DOI:10.3390/app9102138.
[3] WANG S, LIU T Y, TAN L. Automatically learning semantic features for defect prediction[C]// 2016 IEEE/ACM 38th International Conference on Software Engineering(ICSE). 2016:297-308.
[4] DALLA PALMA S, DI NUCCI D, PALOMBA F, et al. Within-project defect prediction of infrastructure-as-code using product and process metrics[J]. IEEE Transactions on Software Engineering, 2021. DOI:10.1109/TSE. 2021.3051492.
[5] CHEN X, MU Y Z, QU Y B, et al. Do different cross-project defect prediction methods identify the same defective modules?〖KG-1mm〗[J]. Journal of Software: Evolution and Process, 2020,32(5). DOI:10.1002/smr.2234.
[6] SUN Z B, LI J Q, SUN H L, et al. CFPS: Collaborative filtering based source projects selection for cross-project defect prediction[J]. Applied Soft Computing, 2021,99. DOI:10.1016/j.asoc.2020.106940.
[7] USHAKOV A V, VASILYEV I. Near-optimal large-scale K-medoids clustering[J]. Information Sciences, 2021,545:344-362.
[8] HUANG J Y, SMOLA A J, GRETTON A, et al. Correcting sample selection bias by unlabeled data[C]// Proceedings of the 19th International Conference on Neural Information Processing Systems. 2006:601-608.
[9] LIU C, YANG D, XIA X, et al. A two-phase transfer learning model for cross-project defect prediction[J]. Information and Software Technology, 2019,107:125-136.
[10]ANDERSON R. Thematic Content Analysis (TCA): Descriptive Presentation of Qualitative Data[EB/OL]. [2021-07-23]. https://www.doc88.com/p-0354526272290.html?r=1.
[11]ZHANG F, KEIVANLOO I, ZOU Y. Data transformation in cross-project defect prediction[J]. Empirical Software Engineering, 2017,22(6):3186-3218.
[12]WU J, WU Y B, NIU N, et al. MHCPDP: Multi-source heterogeneous cross-project defect prediction via multi-source transfer learning and autoencoder[J]. Software Quality Journal, 2021,29(2):405-430.
[13]GOEL L, DAMODARAN D, KHATRI S K, et al. A literature review on cross project defect prediction[C]// 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). IEEE, 2017:680-685.
[14]张瑞,郝克刚. 软件缺陷度量[J]. 计算机应用研究, 2005,22(4):54-57.
[15]陈翔,顾庆,刘望舒,等. 静态软件缺陷预测方法研究[J]. 软件学报, 2016,27(1):1-25.
[16]李学明,李海瑞,薛亮,等. 基于信息增益与信息熵的TFIDF算法[J]. 计算机工程, 2012,38(8):37-40.
[17]侯澍旻,李友荣,刘光临. 一种基于KS检验的时间序列非线性检验方法[J]. 电子与信息学报, 2007,29(4):808-810.
[18]SEJDINOVIC D, SRIPERUMBUDUR B, GRETTON A, et al. Equivalence of distance-based and RKHS-based statistics in hypothesis testing[J]. Annals of Statistics, 2013,41(5):2263-2291.
[19]BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006,22(14):e49-e57.
[20]JURECZKO M, MADEYSKI L. Towards identifying software project clusters with regard to defect prediction[C]// Proceedings of the 6th International Conference on Predictive Models in Software Engineering. 2010:84-93.
[21]CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16(1):321-357.
[22]FRIEDMAN M. A comparison of alternative tests of significance for the problem of m rankings[J]. The Annals of Mathematical Statistics, 1940,11(1):86-92.
[23]DEMAR J. Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006,7:1-30.
[24]REYES O, ALTALHI A H, VENTURA S. Statistical comparisons of active learning strategies over multiple datasets[J]. Knowledge-Based Systems, 2018,145:274-288.
[25]ELLIOTT A C, HYNAN L S. A SAS macro implementation of a multiple comparison post hoc test for a Kruskal-Wallis analysis[J]. Computer Methods and Programs in Biomedicine, 2011,102(1):75-80.
[26]祝颂,钱晓超,陆营波,等. 基于XGBoost的装备体系效能预测方法[J]. 空天防御, 2021,4(2):1-6.
[27]王俊,王赛,任俞明,等. 结合深度学习去噪和超分辨的SAR检测识别[J]. 空天防御, 2020,3(3):24-30.
|