[1] TOSHNIWAL A, TANEJA S, SHUKLA A, et al. Storm@Twitter[C]// Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. 2014:147-156.
[2] CARBONE P, EWEN S, HARIDI S, et al. Apache FlinkTM: Stream and batch processing in a single engine[J]. Bulletin of the Technical Committee on Data Engineering, 2015,38(4):28-38.
[3] ZAHARIA M, DAS T, LI H, et al. Discretized streams: Fault-tolerant streaming computation at scale[C]// Proceedings of the 24th ACM Symposium on Operating Systems Principles. 2013:423-438.
[4] ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark: Cluster computing with working sets[C]// Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. 2010, Article No.10.
[5] KROSS J, KRCMAR H. Modeling and simulating Apache Spark streaming applications[J]. Softwaretechnik-Trends, 2016,36(4):1-3.
[6] VENKATARAMAN S, PANDA A, OUSTERHOUT K, et al. Drizzle: Fast and adaptable stream processing at scale[C]// Proceedings of the 26th Symposium on Operating Systems Principles. 2017:374-389.
[7] AJILA T, MAJUMDAR S. Data driven priority scheduling on a Spark streaming system[C]// Proceedings of the 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). 2019:561-568.
[8] BEI Z D, YU Z B, ZHANG H L, et al. RFHOC: A random-forest approach to auto-tuning Hadoop’s configuration[J]. IEEE Transactions on Parallel and Distributed Systems, 2016,27(5):1470-1483.
[9] LIAO G D, DATTA K, WILLKE T L. Gunther: Search-based auto-tuning of MapReduce[C]// Proceedings of the 2013 European Conference on Parallel Processing. 2013:406-419.
[10]DING X A, LIU Y, QIAN D P. Jellyfish: Online performance tuning with adaptive configuration and elastic container in Hadoop yarn[C]// Proceedings of the 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS). 2015:831-836.
[11]WANG K W, LIN X L, TANG W Z. Predator: An experience guided configuration optimizer for Hadoop MapReduce[C]// Proceedings of the 2012 IEEE 4th International Conference on Cloud Computing Technology and Science. 2012:419-426.
[12]WANG G L, XU J G, HE B. A novel method for tuning configuration parameters of spark based on machine learning[C]// Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communications, IEEE 14th International Conference on Smart City, IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). 2016:586-593.
[13]PRASAD B R, AGARWAL S. Performance analysis and optimization of Spark streaming applications through effective control parameters tuning[M]// Progress in Intelligent Computing Techniques: Theory, Practice, and Applications. Springer, Singapore, 2018:99-110.
[14]CHENG D Z, CHEN Y, ZHOU X B, et al. Adaptive scheduling of parallel jobs in Spark streaming[C]// Proceedings of the 2017 IEEE Conference on Computer Communications. 2017. DOI: 10.1109/INFOCOM.2017.8057206.
[15]SUTTON R S, MCALLESTER D A, SINGH S P, et al. Policy gradient methods for reinforcement learning with function approximation[C]// Proceedings of the 2000 Advances in Neural Information Processing Systems. 2000:1057-1063.
[16]MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[J]. arXiv preprint arXiv:1312.5602, 2013.
[17]崔晓龙,张敏,刘祥,等. Spark作业性能建模及参数优化[J]. 实验技术与管理, 2021,38(3):146-152.
[18]HIRAMAN B R, VIRESH M C, ABHIJEET C K. A study of Apache Kafka in big data stream processing[C]// Proceedings of the 2018 International Conference on Information, Communication, Engineering and Technology (ICICET). 2018. DOI: 10.1109/ICICET.2018.8533771.
[19]VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double q-learning[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016:2094-2100.
[20]SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]// Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP). 2018:108-116.
[21]詹剑锋,高婉铃,王磊,等. BigDataBench:开源的大数据系统评测基准[J]. 计算机学报, 2016,39(1):196-211.
[22]陈侨安,李峰,曹越,等. 基于运行数据分析的Spark任务参数优化[J]. 计算机工程与科学, 2016,38(1):11-19.
[23]阮树骅,潘梵梵,陈兴蜀,等. 一种Spark作业配置参数智能优化方法[J]. 工程科学与技术, 2020,52(1):191-197.
[24]GAO Z P, WANG T, WANG Q, et al. Execution time prediction for Apache Spark[C]// Proceedings of the 2018 International Conference on Computing and Big Data. 2018:47-51.
|