[1] 杨涛,杨博雄,尹萍,等. 基于本征信息分解的植物叶片分类方法研究[J]. 广东蚕业, 2019,53(8):53-55.
[2] SAKAI N, YONEKAWA S, MATSUZAKI A, et al. Two-dimensional image analysis of the shape of rice and its application to separating varieties[J]. Journal of Food Engineering, 1996,27(4):397-407.
[3] 刘骥,曹凤莲,甘林昊. 基于叶片形状特征的植物识别方法[J]. 计算机应用, 2016,36(S2):200-202.
[4] ARA〖KG-1mm〗〖JX-+0.5mm〗〖XCU.TIF;%110%100〗 〖KG-3.5mm〗〖JX+0.5mm〗JO V, BRITTO A S, BRUN A L, et al. Multiple classifier system for plant leaf recognition[C]// 2017 IEEE International Conference on Systems, Man, and Cybernetics. 2017:1880-1885.
[5] YANG C Z, WEI H. Plant species recognition using triangle-distance representation[J]. IEEE Access, 2019,7:178108-178120.
[6] 阚江明,王怡萱,杨晓微,等. 基于叶片图像的植物识别方法[J]. 科技导报, 2010,28(23):81-85.
[7] CERUTTI G, ANTOINE V, TOUGNE L, et al. Reves participation-tree species classification using random forests and botanical features[C]// Conference and Labs of the Evaluation Forum. 2012:1-14.
[8] 曹燕,李欢,王天宝. 基于深度学习的目标检测算法研究综述[J]. 计算机与现代化, 2020(5):63-69.
[9] 陈超,齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学, 2019,46(3):63-73.
[10]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[11]SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[12]HUANG G, LIU Z, LAURENS VD M, et al. Densely connected convolutional networks[J]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:2261-2269.
[13]KRIZHEVSKY A, SUTSKEVER I, HINTONG E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of Advances in Neural Information Processing Systems. 2012:1097-1105.
[14]张帅,淮永建. 基于分层卷积深度学习系统的植物叶片识别研究[J]. 北京林业大学学报, 2016,38(9):108-115.
[15]朱良宽,晏铭,黄建平. 一种新型卷积神经网络植物叶片识别方法[J]. 东北林业大学学报, 2020,48(4):50-53.
[16]于慧伶,麻峻玮,张怡卓. 基于双路卷积神经网络的植物叶片识别模型[J]. 北京林业大学学报, 2018,40(12):132-137.
[17]罗娟,蔡骋. 多线索植物种类识别[J]. 计算机工程与应用, 2020,56(5):160-165.
[18]于希明,洪硕,于金祥,等. 可见光遥感图像船舶目标数据增强方法研究[J/OL]. 仪器仪表学报, 2020(11):261-269[2021-01-11]. http://kns.cnki.net/kcms/detail/ 11.2179.TH.20201210.1155.014.html.
[19]何凯,马红悦,冯旭,等. 基于改进VGG-16模型的英文笔迹鉴别方法[J]. 天津大学学报(自然科学与工程技术版), 2020,53(9):984-990.
[20]崔永杰,高宗斌,刘浩洲,等. 基于卷积层特征可视化的猕猴桃树干特征提取[J]. 农业机械学报, 2020,51(4):181-190.
[21]LEE S H, CHAN C S, WILKIN P, et al. Deep-plant: Plant identification with convolutional neural networks[C]// Proceedings of 2015 IEEE International Conference on Image Processing. 2015:452-456.
[22]DUTA I C, LIU L, ZHU F, et al. Pyramidal convolution: Rethinking convolutional neural networks for visual recognition[J]. Computer Vision and Pattern Recognition, 2020,arXiv:2006.11538.
[23]ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:2921-2929.
|