[1] SREEDHARAN N P, GANESAN B, RAVEENDRAN R, et al. Grey wolf optimisation-based feature selection and classification for facial emotion recognition[J]. IET Biometrics, 2018,7(5):490-499.
[2] 吴成东,卢紫微,于晓升. 基于加权随机森林的图像超分辨率算法研究[J]. 控制与决策, 2019,34(10):2243-2248.
[3] FANG S Q, CAI Z P, SUN W C, et al. Feature selection method based on class discriminative degree for intelligent medical diagnosis[J]. Computers Materials & Continua, 2018,55(3):419-433.
[4] SOMU N, RAMAN M R, KIRTHIVASAN K, et al. Hypergraph based feature selection technique for medical diagnosis[J]. Journal of Medical Systems, 2016,40(11):1-16.〖HJ1.65mm〗
[5] TUNC A. Feature selection in credibility study for finance sector[J]. Procedia Computer Science, 2019,158:254-259.
[6] ZENG Z L, ZHANG H J, ZHANG R, et al. A novel feature selection method considering feature interaction[J]. Pattern Recognition, 2015,48(8):2656-2666.
[7] MWANGI B, TIAN T S, SOARES J C, et al. A review of feature reduction techniques in neuroimaging[J]. Neuroinformatics, 2014,12(2):229-244.
[8] SUGIYAMA M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis[J]. Journal of Machine Learning Research, 2007(8):1027-1061.
[9] WANG Y T, WANG J D, CHEN H Y, et al. Semi-supervised local fisher discriminant analysis based on reconstruction probability class[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2015,29(2):1550007.
[10]PENG H C, LONG F H, DING C, et al. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(8):1226-1238.
[11]CHANDRASHEKAR G, SAHIN F. A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014,40(1):16-28.
[12]XUE B, ZHANG M J, BROWNE W N, et al. A survey on evolutionary computation approaches to feature selection[J]. IEEE Transactions on Evolutionary Computation, 2016,20(4):606-626.
[13]毛勇,周晓波,夏铮,等. 特征选择算法研究综述[J]. 模式识别与人工智能, 2007,20(2):211-218.
[14]CAI J, LUO J W, WANG S l, et al. Feature selection in machine learning: A new perspective[J]. Neurocomputing, 2018,300:70-79.
[15]YU L, LIU H. Efficient feature selection via analysis of relevance and redundancy[J]. Journal of Machine Learning Research, 2004,5:1205-1224.
[16]XU J L. Adapt the mRMR criterion for unsupervised feature selection[C]// International Conference on Advanced Data Mining and Applications, 2010:111-121.
[17]XU J, TANG B, HE H B, et al. Semisupervised feature selection based on relevance and redundancy criteria[J]. IEEE Transactions on Neural Networks, 2017,28(9):1974-1984.
[18]ZHAO J D, LU K, HE X F, et al. Locality sensitive semi-supervised feature selection[J]. Neurocomputing, 2008,71(10):1842-1849.
[19]LEE S, PARK Y, DAURIOL B J, et al. A novel feature selection method based on normalized mutual information[J]. Applied Intelligence, 2012,37(1):100-120.
[20]GAO W F, HU L, ZHANG P, et al. Class-specific mutual information variation for feature selection[J]. Pattern Recognition, 2018,79:328-339.
[21]WANG Y T, WANG J D, LIAO H, et al. An efficient semi-supervised representatives feature selection algorithm based on information theory[J]. Pattern Recognition, 2017,61:511-523.
[22]KOLLER D, SAHAMI M. Toward optimal feature selection[C]// International Conference on Machine Learning. 1996:284-292.
[23]PRESS H, TEUKOLSKY A, VETTERLINGT, et al. Numerical Recipes in C[M]. Cambridge: Cambridge University Press, 1996.
[24]ASUNCION A. UCI Machine Learning Repository[DB/OL]. [2021-01-08]. http://archive.ics.uci.edu/ml/datasets.html.
[25]ZHAO Z, MORSTATTER F, SHARMA S, et al. Advancing feature selection research[J]. ASU Feature Selection Repository Arizona State University, 2010:1-28.
[26]FAYYAD U M, IRANIK B. Multi-interval discretization of continuous-valued attributes for classification learning[C]// International Joint Conference on Artificial Intelligence. 1993:1022-1027.
[27]FIX E, HODGES J L. Discriminatory analysis nonparametric discrimination: Consistency properties[J]. International Statistical Review, 1989,57(3):21-49.
[28]ZHANG S C, LI X L, ZONG M, et al. Efficient kNN classification with different numbers of nearest neighbors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,29(5):1774-1785.
[29]SALZBERG S L. C4.5: Programs for Machine Learning[M]. Elsevier, 2014.
[30]SAXENA A, PARE S, MEENA M S, et al. A two-phase approach for semi-supervised feature selection[J]. Algorithms, 2020,13(9):215.
|