[1] 王璞,黄智仁,龚航. 大数据时代的交通工程[J]. 电子科技大学学报, 2013,42(6):806-816.
[2] 余林,舒勤,柏吉琼. 基于EMD聚类与ARMA的交通流量预测方法[J]. 公路, 2015,60(5):124-129.
[3] 薛洁妮,史忠科. 基于混沌时间序列分析法的短时交通流预测研究[J]. 交通运输系统工程与信息, 2008,8(5):68-72.
[4] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014,4:357-361.
[5] CIREGAN D, MEIER U, SCHMIDHUBER J. Multi-column deep neural networks for image classification[C]// 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012:3642-3649.
[6] ZHAO J F, MAO X, CHEN L J. Speech emotion recognition using deep 1D & 2D CNN LSTM networks[J]. Biomedical Signal Processing and Control, 2019,47:312-323.
[7] LI H. Deep learning for natural language processing: Advantages and challenges[J]. National Science Review, 2018,5(1):24-26.
[8] ZHANG W B, YU Y H, QI Y, et al. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportmetrica A: Transport Science, 2019,15(2):1688-1711.
[9] REN S, YANG B, ZHANG L Y, et al. Traffic speed prediction with convolutional neural network adapted for non-linear spatio-temporal dynamics[C]// Proceedings of the 7th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data. 2018:32-41.
[10]MA X L, DAI Z, HE Z B, et al. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017,17(4). DOI: 10.3390/s17040818.
[11]WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(1):4-24.
[12]HAN Y, WANG S K, REN Y B, et al. Predicting station-level short-term passenger flow in a citywide metro network using spatiotemporal graph convolutional neural networks[J]. International Journal of Geo-Information, 2019,8(6).DOI:10.3390/ijgi8060243.
[13]ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,21(9):3848-3858.
[14]WANG J, GU Q, WU J, et al. Traffic speed prediction and congestion source exploration: A deep learning method[C]// IEEE 16th International Conference on Data Mining. 2016:499-508.
[15]张婧,任刚. 城市道路交通拥堵状态时空相关性分析[J]. 交通运输系统工程与信息, 2015,15(2):175-181.
[16]GRAVES A, MOHAMED A, HINTON G. Speech recognition with deep recurrent neural networks[C]// 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013:6645-6649.
[17]LAURENT T, BRECHT J. The multilinear structure of ReLU networks[C]// Proceedings of the 35th International Conference on Machine Learning. 2018,80:2908-2916.
[18]WAN D, HU Y, REN X. BP neural network with error feedback input research and application[C]// The 2th International Conference on Intelligent Computation Technology and Automation. 2009:63-66.
[19]YAM J Y, CHOW T W. A weight initialization method for improving training speed in feedforward neural network[J]. Neurocomputing, 2000,30(1-4):219-232.
[20]王杰. 基于卷积神经网络的步态识别算法研究[D]. 西安:西安科技大学, 2019.
[21]KINGMA D P, BA J A. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2019.
[22]YAO H X, WU F, KE J T, et al. Deep multi-view spatial-temporal network for taxi demand prediction[J]. arXiv preprint arXiv:1802.08714, 2018.
|