[1] MASUD M M, WOOLAM C, GAO J, et al. Facing the reality of data stream classification: Coping with scarcity of labeled data[J]. Knowledge and Information Systems, 2012,33(1):213-244.
[2] READ J, BIFET A, HOLMES G, et al. Scalable and efficient multi-label classification for evolving data streams[J]. Machine Learning, 2012,88:243-272.
[3] ZHANG K, LUO S S, XIN Y, et al. Online mining intrusion patterns from IDS alerts[J]. Applied Science, 2020,10(8):2983.
[4] SUNG Y S, JANG S J, JEONG Y S, et al. Malware classification algorithm using advanced Word2vec-based Bi-LSTM for ground control stations[J]. Computer Communications, 2020,153:342-348.
[5] AGGARWAL C C, HAN J, WANG J Y,et al. A framework for on-demand classification of evolving data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(5):577-589.
[6] DITZLER G, ROVERI M, ALIPPI C, et al. Learning in nonstationary environments: A survey[J]. IEEE Computational Intelligence Magazine, 2015,10(4):12-25.
[7] GAMA J, CASTILLO G. Learning with local drift detection[J]. Lecture Notes in Computer Science, 2006,4093:42-55.
[8] 王中心,孙刚,王浩. 面向噪音和概念漂移数据流的集成分类算法[J]. 小型微型计算机系统, 2016,37(7):1445-1449.
[9] 桂林,张玉红,胡学钢. 一种基于混合集成方法的数据流概念漂移检测方法[J]. 计算机科学, 2012,39(1):152-155.
[10]SUN Z J, TANG J, QIAO J F. Double window concept drift detection method based on sample distribution statistical test[C]// 2019 Chinese Automation Congress (CAC). 2019:2085-2090.
[11]BHOWMICK K, NARVEKAR M. CDACI: Concept drift detection and adaptation to classify imbalanced data streams[C]// International Conference on Data Science and Analytics. 2018. DOI:10.1109/PUNECON.2018.8745380.
[12]LI Z, XIONG Y, HUANG W C. Drift-detection based incremental ensemble for reacting to different kinds of concept drift[C]// 2019 5th International Conference on Big Data Computing and Communications (BIGCOM). 2019:107-114.
[13]吕艳霞,刘波男,王翠荣,等. 面向概念漂移数据流的自适应增量集成分类算法[J]. 小型微型计算机系统, 2019,40(12):2624-2630.
[14]LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006,17:1411-1423.
[15]DING S F, ZHAO H, ZHANG Y N, et al. Extreme learning machine: Algorithm, theory and applications[J]. Artificial Intelligence Review, 2015,44(1):103-115.
[16]王亮,冶继民. 整合DBSCAN和改进SMOTE的过采样算法[J]. 计算机工程与应用, 2020,56(18):111-118.
[17]BIFET A, HOLMES G, KIRKBY R, et al.MOA:Massive online analysis[J]. Journal of Machine Learning Research, 2010,11:1601-1604.
[18]STREET W N, KIM Y S. A streaming ensemble algorithm (SEA) for large-scale classification [C]// Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2001:377-382.
[19]University of California. KDD CUP 1999 Data[EB/OL]. (1999-10-28)[2020-10-08]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
[20]BARDDAL J P, GOMES H M, ENEMBRECK F, et al. A survey on feature drift adaptation: Definition, benchmark, challenges and future directions[J]. Journal of Systems & Software, 2016,127:278-294.
[21]FRIAS-BLANCO I, CAMPO-AVILA J D, RAMOS-JIMENEZ G, et al. Online and non-parametric drift detection methods based on Hoeffding’s bounds[J]. IEEE Transactions on Knowledge and Data Engineering, 2015,27(3):810-823.
[22]孙艳歌,王志海,原继东,等. 数据流滑动窗口方式下的自适应集成分类算法[J]. 北京交通大学学报, 2016,40(5):9-15.
[23]WANG B Y, PINEAU J. Online bagging and boosting for imbalanced data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2016,28(12):3353-3366.
|