[1] POPPENBORG J, KNUST S. Modeling and optimizing the evacuation of hospitals based on the MRCPSP with resource transfers[J]. European Journal on Computational Optimization, 2016,4(3-4):349-380.
[2] SPRECHER A, DREXL A. Solving multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm[J]. European Journal of Operational Research, 1998,107(2):431-450.
[3] BUDDHAKULSOMSIRI J, KIM D S. Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting[J]. European Journal of Operational Research, 2007,178(2):374-390.
[4] LING W, CHEN F. An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem[J]. Information Sciences, 2011,181(20):4804-4822.
[5] 王为新,李原,张开富. 基于遗传算法的多模式资源约束项目调度问题研究[J]. 计算机应用研究, 2007(1):72-74.
[6] 黄少荣. 资源约束多模式项目调度的遗传算法研究[J]. 微电子学与计算机, 2011,28(9):165-168.
[7] 倪倩芸. 基于改进遗传算法的多模式资源受限项目调度问题研究[D]. 杭州:浙江工商大学, 2018.
[8] MIKA M, WALIGRA G, W〖KG-*3〗〖XCE.TIF;%90%90〗〖KG-*8〗GLARZ J. Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models[J]. European Journal of Operational Research, 2005,164(3):639-668.
[9] 黄少荣. 折现流多模式资源约束项目调度问题研究[J]. 暨南大学学报(自然科学与医学版), 2015,36(4):357-362.
[10]JARBOUI B, DAMAK N, SIARRY P, et al. A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems[J]. Applied Mathematics and Computation, 2008,195(1):299-308.
[11]陈龙,韩兆兰,崔健双. 求解多模式资源约束项目调度问题的离散粒子群算法[J]. 计算机应用, 2015,35(S2):101-105.
[12]袁汪凰,游晓明,刘升. 动态学习机制的双种群蚁群算法[J]. 计算机科学与探索, 2019,13(7):1239-1250.
[13]初梓豪,徐哲,李明,等. 随机多模式资源均衡问题建模与求解[J]. 工业工程, 2017,20(3):95-105.
[14]张倩,王小胜,惠明晶. 工期-费用权衡问题的两个不确定机会约束规划模型[J]. 模糊系统与数学, 2020,34(3):70-78.
[15]宁敏静,何正文,刘人境. 基于随机活动工期的多模式现金流均衡项目调度优化[J]. 运筹与管理, 2019,28(9):91-98.
[16]LIU X F, ZHAN Z H, DENG J D, et al. An energy efficient ant colony system for virtual machine placement in cloud computing[J]. IEEE Transactions on Evolutionary Computation, 2018,22(1):113-128.
[17]CHEN Z G, ZHAN Z H, LIU Y, et al. Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach[J]. IEEE Transactions on Cybernetics, 2019,49(8):2912-2926.
[18]ZHOU S Z, ZHAN Z H, CHEN Z G, et al. A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. DOI:10.1109/TITS.2020.2994-779.
[19]MUTAR M L, BURHANUDDIN M A, HAMEED A S, et al. An efficient improvement of ant colony system algorithm for handling capacity vehicle routing problem[J]. International Journal of Industrial Engineering Computations, 2020,11(4):549-564.
[20]刘中强,游晓明,刘升. 启发式强化学习机制的异构双种群蚁群算法[J]. 计算机科学与探索, 2020,14(3):460-469.
[21]张永强,王晓东. 基于信息素更新和挥发因子调整改进蚁群算法[J]. 西安工程大学学报, 2016,30(3):400-404.
[22]THOMAS S, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer Systems, 2000,16(8):889-914.
[23]黄少荣. 蚁群系统算法求解多模式资源约束项目调度问题[J]. 计算机应用与软件, 2012,29(8):153-155.
[24]周袅,葛洪伟,苏树智. 基于信息素的自适应连续域混合蚁群算法[J]. 计算机工程与应用, 2017,53(6):156-161.
[25]耿苏杰. 基于不确定性资源受限项目的预防调度研究[D]. 南京:南京理工大学, 2015.
|