[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018,68(6):394-424.
[2] SIZILIO G R M A, LEITE C R M, GUERREIRO A M G, et al. Fuzzy method for pre-diagnosis of breast cancer from the fine needle aspirate analysis[J]. BioMedical Engineering Online, 2012,11. DOI: 10.1186/1475-925X-11-83.
[3] MOROTA G, VENTURA R V, SILVA F F, et al. Machine learning and data mining advance predictive big data analysis in precision animal agriculture[J]. Journal of Animal Science, 2018,96(4):1540-1550.
[4] KHUAT T T, GABRYS B. Accelerated learning algorithms of general fuzzy min-max neural network using a branch-and-bound-based hyperbox selection rule[J]. arXiv preprint arXiv:2003.11333, 2020.
[5] KUMAR S A, KUMAR A, BAJAJ V, et al. An improved fuzzy min-max neural network for data classification[J]. IEEE Transactions on Fuzzy Systems, 2020,28(9):1910-1924.
[6] BELLAZZI R, ZUPAN B. Predictive data mining in clinical medicine: Current issues and guidelines[J]. International Journal of Medical Informatics, 2008,77(2):81-97.
[7] SINGH S, GUPTA P R, SHARMA M K. Breast cancer detection and classification of histopathological images[J]. International Journal of Engineering Science and Technology, 2011,3(5):4228-4232.
[8] GEORGE Y M, ZAYED H H, ROUSHDY M I, et al. Remote computer-aided breast cancer detection and diagnosis system based on cytological images[J]. IEEE Systems Journal, 2014,8(3):949-964.
[9] JELEN L, FEVENS T, KRZYZAK A. Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies[J]. International Journal of Applied Mathematics and Computer Science, 2008,18(1):75-83.
[10]NAHATO K B, HARICHANDRAN K N, ARPUTHARAJ K. Knowledge mining from clinical datasets using rough sets and backpropagation neural network[J]. Computational and Mathematical Methods in Medicine, 2015. DOI: 10.1155/2015/460189.
[11]ABDEL-ZAHER A M, ELDEIB A M. Breast cancer classification using deep belief networks[J]. Expert Systems with Applications, 2016,46:139-144.
[12]KAYMAK S, HELWAN A, UZUN D. Breast cancer image classification using artificial neural networks[J]. Procedia Computer Science, 2017,120:126-131.
[13]XIONG K. Research on the improvement of BP neural network algorithm and its application[J]. Advanced Materials Research, 2014,926-930:3216-3219.
[14]LIU X D, WANG Z W, ZHANG S T, et al. A novel approach to fuzzy cognitive map based on hesitant fuzzy sets for modeling risk impact on electric power system[J]. International Journal of Computational Intelligence Systems, 2019,12(2):842-854.
[15]BHARDWAJ A, TIWARI A. Breast cancer diagnosis using genetically optimized neural network model[J]. Expert Systems with Applications, 2015,42(10):4611-4620.
[16]ZHANG R, WU C. A simulated annealing algorithm based on block properties for the job shop scheduling problem with total weighted tardinessobjective[J]. Computers & Operations Research, 2011,38(5):854-867.
[17]ZHENG J, LIN D N, GAO Z J, et al. Deep learning assisted efficient Adaboost algorithm for breast cancer detection and early diagnosis[J]. IEEE Access, 2020,8:96946-96954.
[18]游士兵,严研. 逐步回归分析法及其应用[J]. 统计与决策, 2017(14):31-35.
[19]KERH T, SU Y H, MOSALLAM A. Incorporating global search capability of a genetic algorithm into neural computing to model seismic records and soil test data[J]. Neural Computing and Applications, 2017,28(3):437-448.
[20]ZHANG J H, ZHOU Z G. An improved genetic algorithm and its applications to the optimisation design of an aspirated compressor profile[J]. International Journal for Numerical Methods in Fluids, 2015,79(12):640-653.
[21]DONG H B, LI T, DING R, et al. A novel hybrid genetic algorithm with granular information for feature selection and optimization[J]. Applied Soft Computing, 2018,65:33-46.
[22]裴以建,杨亮亮,杨超杰. 基于一种混合遗传算法的移动机器人路径规划[J]. 现代电子技术, 2019,42(2):183-186.
|