[1] BOX G E P, JENKINS G M, REINSEL G C. Time Series Analysis: Forecasting and Control[M]. John Wiley & Sons, 2011.
[2] 商其亚,程耀东,张志华,等. 基于ARIMA模型的民勤地下水位主要影响因子趋势预测研究[J]. 兰州交通大学学报, 2012,31(6):154-158.
[3] YU X Y, LIONG S Y, BABOVIC V. EC-SVM approach for real-time hydrologic forecasting[J]. Journal of Hydroinformatics, 2004,6(3):209-223.
[4] YADAV B, ELIZA K. A hybrid wavelet-support vector machine model for prediction of lake water level fluctuations using hydro-meteorological data[J]. Measurement, 2017,103:294-301.
[5] ATIQUZZAMAN M, KANDASAMY J. Robustness of extreme learning machine in the prediction of hydrological flow series[J]. Computers & Geosciences, 2018,120:105-114.
[6] KALTEH A M. Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform[J]. Computers & Geosciences, 2013,54:1-8.
[7] WANG Y Y, ZHOU J, CHEN K J, et al. Water quality prediction method based on LSTM neural network[C]// Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). 2017. DOI: 10.1109/ISKE.2017.8258814.
[8] 许国艳,朱进,司存友,等. 基于CNN和MC的水文时间序列预测组合模型[J]. 计算机与现代化, 2019(11):23-28.
[9] HU J M, WANG J Z, ZENG G W. A hybrid forecasting approach applied to wind speed time series[J]. Renewable energy, 2013,60:185-194.
[10]WANG Z P, QIU J F, FANG X Y, et al. Prediction of early stabilization time of electrolytic capacitor based on ARIMA-Bi_LSTM hybrid model[J]. Neurocomputing, 2020,403:63-79.
[11]YIN S, LIU L, HOU J. A multivariate statistical combination forecasting method for product quality evaluation[J]. Information Sciences, 2016,355-356:229-236.
[12]唐小我. 组合预测计算方法研究[J]. 预测, 1991,10(4):35-39.
[13]ZENG Y R, ZENG Y, CHOI B, et al. Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network[J]. Energy, 2017,127:381-396.
[14]WANG J H, LIN G F, CHANG M J, et al. Real-time water-level forecasting using dilated causal convolutional neural networks[J]. Water Resources Management, 2019,33(11):3759-3780.
[15]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6):1229-1251.
[16]李民威. 图像分类中的卷积神经网络方法研究[D]. 南京:南京邮电大学, 2016.
[17]HUANG Y S, LIU S J, YANG L. Wind speed forecasting method using EEMD and the combination forecasting method based on GPR and LSTM[J]. Sustainability, 2018,10(10): Article No. 3693. DOI: 10.3390/su10103693.
[18]李梅,宁德军,郭佳程. 基于注意力机制的CNN-LSTM模型及其应用[J]. 计算机工程与应用, 2019,55(13):20-27.
[19]EUSUFF M, LANSEY K, PASHA F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization[J]. Engineering optimization, 2006,38(2):129-154.
[20]MAHMOUDI N, OROUJI H, FALLAH-MEHDIPOUR E. Integration of shuffled frog leaping algorithm and support vector regression for prediction of water quality parameters[J]. Water Resources Management, 2016,30(7):2195-2211.
[21]RUDER S. An overview of gradient descent optimization algorithms[J]. arXiv preprint arXiv:1609.04747, 2016.
[22]赵英,翟源伟,陈骏君,等. 基于LSTM-Prophet非线性组合的时间序列预测模型[J]. 计算机与现代化, 2020(9):6-11.
[23]LI Y F, CHEN M N, ZHAO W Z. Investigating long-term vehicle speed prediction based on BP-LSTM algorithms[J]. IET Intelligent Transport Systems, 2019,13(8):1281-1290.
[24]TIAN C J, MA J, ZHANG C H, et al. A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network[J]. Energies, 2018,11(12): Article No. 3493. DOI: 10.3390/en11123493.
|