[1] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems. 2017:5998-6008.
[2] GUO H F, TANG R M, YE Y M, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017:1725-1731.
[3] RENDLE S. Factorization machines[C]// 2010 IEEE International Conference on Data Mining. 2010:995-1000.
[4] JUAN Y, ZHUANG Y, CHIN W S, et al. Field-aware factorization machines for CTR prediction[C]// Proceedings of the 10th ACM Conference on Recommender Systems. 2016:43-50.
[5] WANG P, PUTERMAN M L. Mixed logistic regression models[J]. Journal of Agricultural, Biological, and Environmental Statistics, 1998,3(2):175-200.
[6] ZHANG W N, DU T M, WANG J. Deep learning over multi-field categorical data[C]// European Conference on Information Retrieval. 2016:45-57.
[7] HE X N, CHUA T S. Neural factorization machines for sparse predictive analytics[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017:355-364.
[8] XIAO J, YE H, HE X N, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks[J]. Machine Learning, 2017,arXiv:1708.04617.
[9]CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. 2016:7-10.
[10]QU Y R, CAI H, REN K, et al. Product-based neural networks for user response prediction[C]// 2016 IEEE 16th International Conference on Data Mining. 2016:1149-1154.
[11] WANG R X, FU B, FU G, et al. Deep & cross network for ad click predictions[C]// Proceedings of the ADKDD17. 2017:1-7.
[12]LIU Q, YU F, WU S, et al. A convolutional click prediction model[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 2015:1743-1746.
[13]ZHOU G R, ZHU X Q, SONG C R, et al. Deep interest network for click-through rate prediction[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018:1059-1068.
[14]CHUNG J Y, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Neural and Evolutionary Computing, 2014,arXiv:1412.3555.
[15]ZHOU G R, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019,33:5941-5948.
[16]SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:3104-3112.
[17]BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. Computation and Language, 2014,arXiv:1409.0473.
[18]CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computation and Language, 2014,arXiv:1406.1078.
[19] HOCHREITER S, SCHMIDHUBERJ. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[20]SONG W P, SHI C, XIAO Z P, et al. Autoint: Automatic feature interaction learning via self-attentive neural networks[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019:1161-1170.
[21]CHEN Q W, ZHAO H, LI W, et al. Behavior sequence transformer for e-commerce recommendation in alibaba[C]// Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. 2019:1-4.
[22]PEI C H, ZHANG Y, ZHANG Y F, et al. Personalized re-ranking for recommendation[C]// Proceedings of the 13th ACM Conference on Recommender Systems. 2019:3-11.
[23]LIAN J X, ZHOU X H, ZHANG F Z, et al. XDeepFM: Combining explicit and implicit feature interactions for recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018:1754-1763.
|