[1] 寇潇. 基于深度学习的桥梁裂缝检测算法研究[D]. 西安:西安电子科技大学, 2017.
[2] 姚学练,贺福强,平安,等. 基于HSI颜色空间与灰度波动相结合的复杂桥梁蜂窝麻面的图像分割[J]. 计算机应用, 2019,39(3):882-887.
[3] 刘峰. 基于深度学习的动态人脸识别方法研究[D]. 广州:广东工业大学, 2019.
[4] 苑豪杰,刘昌禄,许建平,等. 基于自适应多子直方图均衡的图像增强算法[J]. 指挥控制与仿真, 2017,39(5):45-49.
[5] NICK W, ASAMENE K, BULLOCK G, et al. A study of machine learning techniques for detecting and classifying structural damage[J]. International Journal of Machine Learning and Computing, 2015,5(4):313-318.
[6] 李良福,马卫飞,李丽,等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019,45(9):1727-1742.
[7] 刘德才,杨南贵,陈亚军. 混凝土倒角蜂窝麻面成因及预防措施探讨[J]. 山西建筑, 2017,43(20):98-99.
[8] 魏巍,申铉京,千庆姬. 工业检测图像灰度波动变换自适应阈值分割算法[J]. 自动化学报, 2011,37(8):944-953.
[9] 刘洪公,王学军,李冰莹,等. 基于卷积神经网络的桥梁裂缝检测与识别[J]. 河北科技大学学报, 2016,37(5):485-490.
[10]RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation[M]. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, 1986:318-362.
[11]苑豪杰,刘昌禄,许建平,等. 基于自适应多子直方图均衡的图像增强算法[J]. 指挥控制与仿真, 2017,39(5):45-49.
[12]宋倩,黄昶,余慧瑶. 基于TensorFlow 的交通标志形状识别[J]. 信息通信, 2017(12):286-288.
[13]SUN L M, SUN S W. Bridge condition assessment based on long-term strain and vehicle monitoring[C]// Proceedings of the 3rd International Symposium Oil Life-Cycle Civil Engineering. 2012:511-518.
[14]AUDHKHASI K, OSOBA O, KOSKO B. Noise-enhanced convolutional neural networks[J]. Neural Networks, 2016,78:15-23.
[15]DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005,1:886-893.
[16]郭晓汾,邹国平. 基于神经网络技术的故障诊断专家系统的研究[J]. 中国公路学报, 1998,11(4):106-110.
[17]王莹,王忠民,王义峰,等. 面向色彩再现的多光谱图像非线性降维方法[J]. 光学精密工程, 2011,19(5):1171-1178.
[18]ERTAM F, AYDYN G. Data classification with deep learning using Tensorflow[C]// Proceedings of the 2017 International Conference on Computer Science and Engineering. 2017:755-758.
[19]WANG X L, HU Z Z. Grid-based pavement crack analysis using deep learning[C]// Proceedings of the 2017 4th International Conference on Transportation Information and Safety (ICTIS). 2017:917-924.
[20]CHA Y J, CHOI W, BYKZTRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer Aided Civil & Infrastructure Engineering, 2017,32(5):361-378.
[21]交通运输部公路科协研究院. 公路桥梁技术状况评定标准: JTG/T H21-2011[S]. 北京:人民交通出版社, 2011.
|