[1] CAI H Y, ZHENG V W, CHANG K C C. A comprehensive survey of graph embedding: Problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,30(9):1616-1637.
[2] ZHANG D K, YIN J, ZHU X Q, et al. Network representation learning: A survey[J]. arXiv preprint arXiv:1801.05852, 2018.
[3] 涂存超,杨成,刘知远,等. 网络表示学习综述[J]. 中国科学:信息科学, 2017,47(8):980-996.
[4] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: Online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014:701-710.
[5] TANG J, QU M, WANG M Z, et al. LINE: Large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. 2015:1067-1077.
[6] 〖JP+1〗GROVER A, LESKOVEC J. Node2vec: Scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016:855-864.
[7] TU C C, ZHANG W C, LIU Z Y, et al. Max-margin deepwalk: Discriminative learning of network representation[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016:3889-3895.
[8] JACOB Y, DENOYER L, GALLINARI P. Learning latent representations of nodes for classifying in heterogeneous social networks[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. 2014:373-382.
[9] TANG J, QU M, MEI Q Z. PTE: Predictive text embedding through large-scale heterogeneous text networks[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015:1165-1174.
[10]SHANG J B, QU M, LIU J L, et al. Meta-path guided embedding for similarity search in large-scale heterogeneous information networks[J]. arXiv preprint arXiv:1610.09769, 2016.
[11]DONG Y X, CHAWLA N V, SWAMI A. Metapath2vec: Scalable representation learning for heterogeneous networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017:135-144.
[12]FU T Y, LEE W C, LEI Z. Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017:1797-1806.
[13]LU Y F, SHI C, HU L M, et al. Relation structure-aware heterogeneous information network embedding[J]. arXiv preprint arXiv:1905.08027, 2019.
[14]GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014,2:2672-2680.
[15]YU L T, ZHANG W N, WANG J, et al. SeqGAN: Sequence generative adversarial nets with policy gradient[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017:2852-2858.
[16]WANG J, YU L T, ZHANG W N, et al. IRGAN: A minimax game for unifying generative and discriminative information retrieval models[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017:515-524.
[17]PAN S R, HU R Q, LONG G D, et al. Adversarially regularized graph autoencoder for graph embedding[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018:2609-2615.
[18]WANG H W, WANG J, WANG J L, et al. GraphGAN: Graph representation learning with generative adversarial nets[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018:2508-2515.
[19]YU W C, ZHENG C, CHENG W, et al. Learning deep network representations with adversarially regularized autoencoders[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2018:2663-2671.
[20]DAI Q Y, LI Q, TANG J, et al. Adversarial network embedding[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018:2167-2174.
[21]DING M, TANG J, ZHANG J. Semi-supervised learning on graphs with generative adversarial nets[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018:913-922.
[22]HU B B, FANG Y, SHI C. Adversarial learning on heterogeneous information networks[C]// Proceedings of the 25th ACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining. 2019:120-129. |