[1] Szor P. The Art of Computer Virus Research and Defense[M]. US:Pearson Education, 2005.
[2] Kephart J O, White S R. Directed-graph epidemiological models of computer viruses[C]// Procceedings of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy. 1991:343-359.
[3] 张丽萍,洪龙,王惠南. 一种网络病毒传播的时滞微分方程模型[J]. 南京邮电大学学报(自然科学版), 2007,27(5):78-83.
[4] 冯丽萍,王鸿斌,冯素琴. 基于生物学原理的计算机网络病毒传播模型[J]. 计算机工程, 2011,37(11):155-157.
[5] 肖丽,包骏杰,冯丽萍. 一种新的计算机病毒模型的稳定性分析[J]. 湘潭大学自然科学学报, 2012,34(2):94-96.
[6] 叶晓梦,杨小帆. 基于两阶段免疫接种的SIRS计算机病毒传播模型[J]. 计算机应用, 2013,33(3):739-742.〖HJ1.35mm〗
[7] 彭梅,李传东,何兴. 基于直接免疫的SEIR计算机病毒传播模型[J]. 重庆师范大学学报(自然科学版), 2013,30(1):77-80.
[8] 盖绍婷,唐功友,于浩,等. 带有免疫的计算机病毒传播模型的稳定性[J]. 中国海洋大学学报, 2013,43(10):110-114.
[9] 冯丽萍,王鸿斌,冯素琴. 改进的SIR计算机病毒传播模型[J]. 计算机应用, 2011,31(7):1891-1893.
[10]Chen Jingyun, Yang Xiaofan, Gan Chenquan. Propagation of computer virus under the influnce of external computers: A dynamical model [J]. Journal of Information & Computational Science, 2013,10(16):5275-5282.
[11]杨斌. 具有时滞的SIQR计算机病毒模型分析[J]. 重庆工商大学学报(自然科学版), 2013,30(9):70-73.
[12]Ren Jianguo, Yang Xiaofan, Yang Luxing, et al. A delayed computer virus propagation model with its dynamics[J]. Chaos Solitons and Fractals, 2012,45(1):74-79.
[13]Feng Liping, Liao Xiaofeng, Li Huaqing, et al. Hopf bifurcation analysis of a delayed viral infection model in computer networks[J]. Mathematical and Computer Modelling, 2012,56(7-8):167-179.
[14]Mishra B K, Saini D K. SEIRS epidemic model with delay for transmission of malicious objects in computer network[J]. Applied Mathematics and Computation, 2007,188(2):1476-1482.
[15]Muroya Y, Enatsu Y, Li Huaxing. Global stability of a delayed SIRS computer virus propagation model[J]. International Journal of Computer Mathematics, 2014,91(3):347-367.
[16]Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation[M]. Cambridge University Press, 1981. |