[1] 侯召成,曹明亮,张弛,等. 流域水文数据挖掘体系研究[J]. 南水北调与水利科技, 2010,8(1):61-64.
[2] 张景阳,潘光友. 多元线性回归与BP神经网络预测模型对比与运用研究[J]. 昆明理工大学学报(自然科学版), 2013,38(6):61-68.
[3] 吴莉萍,朱长军,李莎. 灰色预测在地下水位预测中的应用[J]. 地下水, 2012,34(2):66-68.
[4] Blatt M, Wiseman S, Domany E. Superparamagnetic clustering of data[J]. Physical Review Letters, 1996,76(18):3251-3254.
[5] Yoon H, Jun S C, Hyun Y, et al. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer[J]. Journal of Hydrology, 2011,396(1-2):128-138.
[6] 马细霞,穆浩泽. 基于小波分析的支持向量机径流预测模型及应用[J]. 灌溉排水学报, 2008,27(3):79-81.
[7] 胡彩虹,高晶,朱业玉,等. 支持向量机在半干旱半湿润地区水文预报中的应用研究[J]. 气象与环境科学, 2010,33(2):1-6.
[8] 张殷钦,刘俊民,郝健. 正则化RBF网络模型在地下水位预测中的应用[J]. 西北农林科技大学学报(自然科学版), 2011,39(10):204-208.
[9] Mohanty S, Madan K J, Kumar A, et al. Artificial neural network modeling for groundwater level forecasting in a river island of Eastern India[J]. Water Resources Management, 2010,24(9):1845-1865.
[10]Carcano E C, Bartolini P, Muselli M, et al. Jordan recurrent neural network versus IHACRES in modelling daily streamflows[J]. Journal of hydrology, 2008,362(3-4):291-307.
[11]肖辉. 时间序列的相似性查询与异常检测[D]. 上海:复旦大学, 2005.
[12]欧阳如琳,任立良,周成虎. 水文时间序列的相似性搜索研究[J]. 河海大学学报(自然科学版), 2010,38(3):241-245.
[13]Ding H, Trajcevski G, Scheuermann P, et al. Querying and mining of time series data: Experimental comparison of representations and distance measures[C]// Proceedings of the 34th VLDB. 2008,1(2):1542-1552.
[14]Yi B K, Faloutsos C. Fast time sequence indexing for arbitrary Lp norms[C]// Proceedings of the 26th International Conference on Very Large Databases. 2000:297-306.
[15]Zhou Jin-hai, Shen Gang-lei, Ding Xiao-li, et al. BP neural network in analysis of disease influential factors[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011,15(9):1702-1705.
[16]丁红,董文永,吴德敏. 基于LM算法的双隐含层BP神经网络的水位预测[J]. 统计与决策, 2014(15):16-19.
|