[1]
Salton G, McGill M J. Introduction to Modern Information Retrieval[M]. McGrawHill, 1983.
[2] 〖JP2〗Luhn H P. Autoencoding of Documents for Information Retrieval Systems[M]// Modern Trends in Documentation. New York: Pergamon Press, 1959:6895.
[3] Salton G, Wong A, Yang C S. A vector space model for automate indexing[J]. Communications of ACM, 1975,18(11):613620.
[4] Lewis D D. Nave Bayes at forty: The independence assumption in information retrieval[C]// Proceedings of the 10th European Conference on Machine Learning. 1998:415.
[5] 李荣陆,胡运发. 基于密度的KNN文本分类器训练样本裁剪方法[J]. 计算机研究与发展, 2004,41(4):539545.
[6] Hsu C, Lin C. A comparison on methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13(2):415425.
[7] 宋惟然. 中文文本分类中的特征选择和权重计算方法研究[D]. 北京:北京工业大学, 2013.
[8] 候敏. 计算语言学与汉语自动分析[M]. 北京:北京广播学院出版社, 1999.
[9] 苗夺谦,卫志华. 中文文本信息处理的原理与应用[M]. 北京:清华大学出版社, 2007.
[10]Salton G. On the construction of effective vocabularies for information retrieval[C]// Proceedings of the 1973 Meeting on Programming Languages and Information Retrieval. 1973: 4860.
[11]张保富,施化吉,马素琴. 基于TFIDF文本特征加权方法的改进研究[J]. 计算机应用与软件, 2011,28(2):1720.
[12]张建娥. 基于TFIDF和词语关联度的中文关键词提取方法[J]. 情报科学, 2012,30(10):15421555.
[13]李学明,李海瑞,薛亮,等. 基于信息增益与信息熵的TFIDF算法[J]. 计算机工程, 2012,38(8):3740.
[14]Cohen W, Singer Y. Contextsensitive learning methods for text categorization[J]. ACM Trans. Information Systems, 1996,17(2):146173.
[15]Han E H, Karypis G. Centroidbased document classification: Analysis & experimental results[C]// European Conference on Principles of Data Mining and Knowledge Discovery (PKDD). 2000:424431.
[16]张玉芳,彭时名,吕佳. 基于文本分类TFIDF方法的改进与应用[J]. 计算机工程, 2006,32(19):7678.
[17]施聪莺,徐朝军,杨晓江. TFIDF算法研究综述[J]. 计算机应用, 2009,29(B6):167170,180.