[1]
苗夺谦,王国胤,刘清,等. 粒计算:过去、现在与展望[M]. 北京:科学出版社, 2007.
[2] Staniford S, Hoagland J, McAlerney J. Practical automated detection of stealthy portscans[J]. Journal of Computer Security, 2002,10(2):105-136.
[3] Bridges S, Vaughn R. Fuzzy data mining and genetic algorithms applied to intrusion detection[C]// Proceedings 23rd National Information Systems Security Conference. Baltimore, 2000:13-31.
[4] Sung A, Mukkamala S. Identify important features for intrusion detection using support vector machines and neural networks[C]// IEEE Proceedings of the 2003 Symposium on Application and the Internet. 2003:209-216.
[5] 李和平,胡占义,吴毅红. 基于半监督学习的行为建模与异常检测[J]. 软件学报, 2007,18(3):527-537.
[6] Hu W M, Xie D, Tan T N. A hierarchical self-organizing approach for learning the patterns of motion trajectories[J]. IEEE Transactions on Neural Networks, 2004,15(1):135-144.
[7] Zhang D, Gatica-Perez D, Bengio S, et al. Semi-supervised adapted HMMs for unusual event detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005:611-618.
[8] Yasami Y, Mozaffari S P. A novel unsupervised classification approach for network anomaly detection by k-means clustering and ID3 decision tree learning method[J]. ACM Journal of Supercomputing, 2010,53(11):231-245.
[9] Park N H, Oh S H, Lee W S. Anomaly intrusion detection by clustering transactional audit streams in a host computer [J]. Information Sciences, 2010,180(12):2375-2389.
[10]李娜,钟诚. 基于划分和凝聚层次聚类的无监督异常检测[J]. 计算机工程, 2008,34(2):120-123.
[11] 周亚建,徐晨,李继国. 基于改进CURE聚类算法的无监督异常检测方法[J]. 通信学报, 2010,31(7):19-23,32.
[12]Elkan C. Using the triangle inequality to accelerate k-means[C]// Proceedings of the Twentieth International Conference on Machine Learning. 2003:147-153.
[13]曹文平. 一种有效k-均值聚类中心的选取方法[J]. 计算机与现代化, 2008(3):95-97.
[14]UCIrvine. UCI Machine Learning Repository[DB/OL]. http://archive.ics.uci.edu/ml/, 2013-08-13. |