[1] PEARL J. Causal inference in statistics: An overview[J].Statistics Surveys, 2009(3):96-146.
[2] MORAFFAH R, MORAFFAH B, KARAMI M, et al. Causal adversarial network for learning conditional and interventional distributions[J]. arXiv preprint arXiv:2008.11
376, 2020.
[3] PAWLOWSKI N, CASTRO D C, GLOCKER B. Deep structural causal models for tractable counterfactual inference[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. ACM, 2020: 857-869.
[4] JUNG Y H, TIAN J, BAREINBOIM E. Learning causal effects via weighted empirical risk minimization[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. ACM, 2020:12697-12709.
[5] ZE[C]EVICM, DHAMI D S, VELI[C]KOVIC P, et al. Relating graph neural networks to structural causal models[J]. arXiv preprint arXiv:2109.04173, 2021.
[6] KHEMAKHEM I, MONTI R P, LEECH R, et al. Causal autoregressive flows[C]// International Conference on Artificial Intelligence and Statistics. PMLR, 2021: 3520-3528.
[7] PARAFITA Á, VITRIÁ J. Causal inference with deep causal graphs[J]. arXiv preprint arXiv:2006.08380, 2020.
[8] GARRIDO S, BORYSOV S S, RICH J, et al. Estimating causal effects with the neural autoregressive density estimator[J]. Journal of Causal Inference, 2021,9(1):211-228.
[9] 邓攀,刘俊廷,王晓,等. STCTN:一种基于时域偏倚校正与空域因果传递的时空因果表示学习方法[J]. 计算机学报, 2023,46(12):2535-2550.
[10] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. ACM, 2020: 6840-6851.
[11] ABSTREITER K, MITTAL S, BAUER S, et al. Diffusion-based representation learning[J]. arXiv preprint arXiv:2105.14257, 2021.
[12] SANCHEZ P, LIU X, O'NEIL A Q, et al. Diffusion models for causal discovery via topological ordering[J]. arXiv preprint arXiv:2210.06201, 2022.
[13] SANCHEZ P, TSAFTARIS S A. Diffusion causal models for counterfactual estimation[J]. arXiv preprint arXiv:2202.10166, 2022.
[14] MUKHOPADHYAY S, GWILLIAM M, AGARWAL V, et al. Diffusion models beat GANs on image classification[J]. arXiv preprint arXiv:2307.08702, 2023.
[15] CHAO P, BL[O]OBAUM P, KASIVISWANATHAN S P. Interventional and counterfactual inference with diffusion models[J]. arXiv preprint arXiv:2302.00860, 2023.
[16] SHIMIZU T. Diffusion model in causal inference with unmeasured confounders[C]// 2023 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2023:683-688.
[17] KARIMI M A M, DITTADI A, BAUER S, et al. Diffusion-based causal representation learning[J]. Entropy, 2024, 26(7): 556.
[18] 蔡风景,蔡周策,李元. 基于DAG方法的经济变量因果关系研究[J]. 统计与信息论坛, 2008,23(9):28-31.
[19] 胡嘉伟. 结构因果模型中的do算子分析[J]. 自然辩证法通讯, 2024,46(6):57-65.
[20] SONG Y, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[J]. arXiv preprint arXiv:2011.13456, 2020.
[21] PEARL J, MACKENZIE D.The book of why: The new science of cause and effect[J]. Science, 2018,361(6405):855.
[22] BAREINBOIM E, CORREA J D, IBELING D, et al. On Pearl’s hierarchy and the foundations of causal inference[M]// Probabilistic and Causal Inference: The Works of Judea Pearl, ACM, 2022:507-556.
[23] HANSEN N R, SOKOL A. Causal interpretation of stochastic differential equations[J]. Electronic Journal of Probability, 2014,19:1-24.
[24] LUO C. Understanding diffusion models: A unified perspective[J]. arXiv preprint arXiv:2208.11970, 2022.
[25] KARIMI A H, VON K[U]GELGEN J, SCH[O]LKOPF B, et al. Algorithmic recourse under imperfect causal knowledge: A probabilistic approach[J].arXiv preprint arXiv:2006.06
831, 2022.
[26] SANCHEZ-MARTIN P, RATEIKE M, VALERA I. VACA: Design of variational graph autoencoders for interventional and counterfactual queries[J].arXiv preprint arXiv:2110.146
90, 2021.
[27] LI H X, XIAO Y H, ZHENG C Y, et al. Balancing unobserved confounding with a few unbiased ratings in debiased recommendations[C]// Proceedings of the ACM Web Conference 2023. ACM, 2023:1305-1313.
[28] LI H X, DAI Q Y, LI Y R, et al. Multiple robust learning for recommendation[C]// Proceedings of the AAAI Conference on Artificial Intelligence. AAAI, 2023,37(4): 4417-4425.
[29] LI H X, ZHENG C Y, WU P. StableDR: Stabilized doubly robust learning for recommendation on data missing not at random[J]. arXiv preprint arXiv:2205.04701, 2022.