GUO Wangyong, HUANG Kun, LIANG Jiaben. Recognition of Composite Power Disturbances Based on Feature Selection and SCNGO-HKELM Algorithm[J]. Computer and Modernization, 2025, 0(11): 49-57.
[1] 汪颖,罗代军,肖先勇,等. IEEE ICHQP2018与电能质量发展方向[J]. 电力自动化设备, 2019,39(4):197-203.
[2] 左向红,陈斌,张啸宇,等. 分布式发电系统电能质量评估指标研究[J]. 电网与清洁能源, 2017,33(4) : 99-104.
[3] 林海雪. 电能质量指标的完善化及其展望[J].中国电机工程学报, 2014,34(29):5073-5079.
[4] 汪飞,全晓庆,任林涛. 电能质量扰动检测与识别方法研究综述[J].中国电机工程学报,2021,41(12):4104-4121.
[5] 王康,席燕辉,胡康. 一种新的基于深度置信网络的电能质量扰动分类方法[J].电力科学与技术学报,2023,38(1):171-177.
[6] 秦英林,田立军,常学飞. 基于小波变换能量分布和神经网络的电能质量扰动分类[J].电力自动化设备, 2009,29(7):64-67.
[7] 黄建明,瞿合祚. 基于短时傅里叶变换及其谱峭度的电能质量混合扰动分类[J].电网技术,2016,40(10): 3184-3191.
[8] 陈向群,杨茂涛,刘谋海,等. 基于模糊聚类分析的电能质量扰动模式识别方法[J].电力科学与技术学报,2022,37(2):79-85.
[9] 占勇,程浩忠,丁屹峰,等. 基于 S 变换的电能质量扰动支持向量机分类识别[J].中国电机工程学报,2005,25(4):51-56.
[10] 张淑清,乔永静,姜安琦,等. 基于 CEEMD 和 GG 聚类的电能质量扰动识别[J]. 计量学报, 2019,40(1): 49-57.
[11] SEKAR K, SENDILKUMAR S, KARTHICK K. Power quality disturbance detection using machine learning algorithm[C]// Proceedings of 2020 IEEE International Conference on Advances and Developments in Electrical and Electronics Engineering. IEEE, 2020:1-5.
[12] 张全明,刘会金. 最小二乘支持向量机在电能质量扰动分类中的应用[J]. 中国电机工程学报, 2008,28(1):106-110.
[13] 陈晓静,李开成,肖剑,等. 一种实时电能质量扰动分类方法[J]. 电工技术学报, 2017,32(3): 45-55.
[14] 于华楠,阮筱颖,王鹤. 基于改进堆叠去噪自动编码器的电能质量扰动分类方法[J]. 电力信息与通信技术,2021,19(9):1-7.
[15] 吴怀诚,刘家强,岳蕾,等. 基于多特征融合的卷积神经网络的电能质量扰动识别方法[J].电网与清洁能源,2023,39(9):19-23.
[16] JAMLUS N U I A,SHAHBUDIN S,KASSIM M. Power quality disturbances classification analysis using residual neural network[C]// Proceedings of the 2022 IEEE 18th International Colloquium on Signal Processing & Applications. IEEE, 2022:442-447.
[17] 李祖明,吕干云,陈诺,等. 基于混沌集成决策树的电能质量复合扰动识别[J].电力系统保护与控制,2021,49(21):18-27.
[18] 徐志超,杨玲君,李晓明. 基于聚类改进S变换与直接支持向量机的电能质量扰动识别[J].电力自动化设备,2015,35(7):50-58.
[19] 兰名扬,刘宇龙,金涛,等. 基于可视化轨迹圆和Res Net18的复合电能质量扰动类型识别[J]. 中国电机工程学报, 2022,42(17):6274-6285.
[20] IEEE recommended practice for monitoring electric power quality: IEEE Std 1159-2019 [S]. IEEE,2019.
[21] TAN R, RAMACHANDARAMURTHY V. Numerical model framework of power quality events[J]. European Journal of Scientific Research, 2010,43(1):30-47.
[22] MALIK A,HAQUE A,KURUKURU V S B, et al. Overview of fault detection approaches for grid connected photovoltaic inverters[J]. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2022,2:100035.
[23] GHOJOGH B,SAMAD M N, MASHHADI S A,et al. Feature selection and feature extraction in pattern analysis: A literature review[J].arXiv preprint arXiv,1905.02845,2019.
[24] DEHGHANI M,HUBALOVSKY, H,TROJOVSKY A. Northern goshawk optimization: A new swarm-based algorithm for solving optimization problems[J]. IEEE Access,2021,9:162059-162080.
[25] LIANG Y, HU X Z, HU G, et al. An enhanced northern goshawk optimization algorithm and its application in practical optimization problems[J]. Mathematics, 2022,10(22):4383.
[26] ZHAO F U, ZHANG L X, ZHANG Y, et al. An improved water wave optimisation algorithm enhanced by CMA-ES and opposition-based learning[J]. Connection Science, 2020, 32(2): 132-161.
[27] HUANG G B, ZHU Q Y,SIEW C K. Extreme learning machine:Theory and applications[J]. Neurocomputing, 2006,70(1-3):489-501.
[28] HUANG G B,SIEW C K. Extreme learning machine with randomly assigned RBF kernels[J]. International Journal of Information Technology, 2005,11:16-24.
[29] LV L,WANG W H,ZHANG Z Y,et al. A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine[J]. Knowledge-Based Systems, 2020,195:105648.
[30] 唐瑞. 光伏并网发电系统电能质量扰动检测及分类方法研究[D]. 沈阳农业大学, 2017.
[31] 李雨涵,刘燕燕,刘闯,等.基于黑猩猩算法优化支持向量机的变电站接地网腐蚀速率预测[J].湖南电力,2024,44(2):77-83.