[1] 谭慧娟,郭文鑫,郑文杰,等. 国内外电力现货市场的发展综述与展望[J]. 发电技术, 2024,45(1):1-11.
[2] 竺筱晶,薛睿萌. 基于小波变换的Bi-LSTM-TCN短期电价预测[J]. 电工电能新技术, 2023,42(12):60-68.
[3] 国家发展改革委. 关于进一步深化燃煤发电上网电价市场化改革的通知[EB/OL]. (2021-10-11)[2024-09-19]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202110/t20211012_1299461.html.
[4] 朱峰,单超,吴宁,等. 电力市场环境下电力用户电价特征提取和异常识别方法[J/OL]. 上海交通大学学报:1-23.(2024-03-29)[2024-09-19]. https://doi.org/10.16183/j.
cnki.jsjtu.2023.448.
[5] 周倚帆. 市场化改革背景下供电企业电费电价风险控制分析[J]. 中国市场,2024(5):170-173.
[6] SAPNKEN F E, TAZEHKANDGHESHLAGH K A, DIBO
MA B S,et al. A whale optimization algorithm-based multivariate exponential smoothing grey-holt model for electricity price forecasting[J]. Expert Systems With Applications,2024,255(B). DOI: 10.1016/j.eswa.2024.124663.
[7] GUO Y, DU Y, WANG P, et al. A hybrid forecasting m-ethod considering the long-term dependence of day-ahead electricity price series[J]. Electric Power Systems Research, 2024,235. DOI: 10.1016/J.EPSR.2024.110841.
[8] WANG T, FU L Y, ZHOU Y H, et al. Service price forecasting of urban charging infrastructure by using deep st-acked CNN-BiGRU network[J]. Engineering Applications of Artificial Intelligence, 2022,116. DOI: 10.1016/J.ENGA
PPAI.2022.105445.
[9] 郝椿淋,张剑. 基于自注意力机制TCN-BiGRU的流预测[J]. 电子测量技术, 2024,47(8):61-68.
[10] 周浪,樊坤,瞿华,等. 基于ECA注意力机制改进的EfficientNet-E模型的森林火灾识别[J]. 华南理工大学学报(自然科学版), 2024,52(2):42-49.
[11] 何李杰,高茂庭. 基于交叉注意力的点击率预测模型[J/OL]. 计算机工程与应用:1-9. (2024-04-17)[2024-09-19]. http://kns.cnki.net/kcms/detail/11.2127.TP.20240
416.1000.012.html.
[12] BARJASTEH A, GHAFOURI S H, HASHEMI M. A hybrid model based on discrete wavelet transform (DWT) and bidirectional recurrent neural networks for wind speed prediction[J]. Engineering Applications of Artificial Intelligence,2024,127(B). DOI: 10.1016/J.ENGAPPAI.2023.107340.
[13] 陆心怡,关艳,高曦莹,等. 面向工业用户的混合DWT-DE-RNN电力负荷预测[J]. 机械设计与制造, 2024(10):73-78.
[14] 郭晨,李雪瑞,韩照洋,等. 基于深度信念网络的日前电价预测[J]. 电力需求侧管理, 2022,24(2):86-91.
[15] GEETHA K, HOTA M K, KARRAS D A. A novel approach for seismic signal denoising using optimized discrete wavelet transform via honey badger optimization algorithm[J]. Journal of Applied Geophysics, 2023,219. DOI: 10.1016/J.JAPPGEO.2023.105236.
[16] 孙晓娟,王利. 基于CEEMD小波包算法的降噪方法研究[J]. 计算机与现代化, 2020(9):73-76.
[17] XIA C H, ZHANG M, CAO J. A hybrid application of soft computing methods with wavelet SVM and neural network to electric power load forecasting[J]. Journal of Electrical Systems and Information Technology, 2017,5(3):681-696.
[18] LIU M H, ZENG A L, CHEN M X, et al. SCINet: Time series modeling and forecasting with sample convolution and interaction[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems.ACM, 2022,35:5816-5828.
[19] LIU M P, LI Y Z, HU J G, et al. A new hybrid model based on SCINet and LSTM for short-term power load forecasting[J]. Energies. 2024,17(1). DOI: 103390/en17d0095.
[20] CEN Z L, HU S L, HOU Y D, et al. Remaining useful life prediction of machinery based on improved sample convolution and interaction network[J]. Engineering Applications of Artificial Intelligence, 2024,135. DOI:10.1016/J.ENGAPPAI.2024.108813.
[21] 游嘉靖,何月顺,何璘琳,等. 基于AHP-CNN的加密流量分类方法[J]. 计算机与现代化, 2024(4):83-87.
[22] 朱振宇,高德欣. 基于CNN-BiLSTM网络的锂离子电池健康状态检测方法[J]. 电子测量技术, 2023,46(3):128-133.
[23] 曹渝昆,桂丽嫒. 基于深度可分离卷积的轻量级时间卷积网络设计[J]. 计算机工程, 2020,46(9):95-100.
[24] 陆心怡,关艳,高曦莹,等. 面向工业用户的混合DWT-DE-RNN电力负荷预测[J]. 机械设计与制造, 2024(10):73-78.
[25] 吴甜甜,李延恺,刘阳. 基于多尺度频率注意力的多阶段去雨算法[J]. 计算机与现代化, 2024(2):50-55.
[26] 李德康,汤进,王福田,等. 基于多源动作信息的手卫生动作质量评估[J]. 计算机与现代化, 2023(12):87-93.
[27] 彭运猛,高林,赵晓雨,等. 基于LightGBM-Transformer算法的短期电力负荷预测[J]. 湖北民族大学学报(自然科学版), 2023,41(3):331-337.
[28] 龚飘怡. 基于需求响应的电力零售市场分时定价机制研究[D]. 武汉:华中科技大学, 2023.
[29] 郭雪丽,华大鹏,包鹏宇,等. 一种基于改进VMD-PSO-CNN-LSTM的短期电价预测方法[J]. 电力科学与技术学报, 2024,39(2):35-43.
[30] 王耀庆,孙建平,李冰,等. 基于小波变换和LSTM的短期风速预测研究[J]. 计算机仿真, 2021,38(2):438-443.
[31] 吉兴全,曾若梅,张玉敏,等. 基于注意力机制的CNN-LSTM短期电价预测[J]. 电力系统保护与控制, 2022,50(17):125-132.
[32] 戴雯菊,严炼. 改进神经网络下的电力负荷短期预测方法[J]. 自动化应用, 2024,65(14):178-179.
[33] 冯裕祺,李辉,李利娟,等. 基于CNN-GRU的光伏电站电压轨迹预测[J]. 中国电力, 2022,55(7):163-171.