Sublingual Vein Image Segmentation Based on HRNetV2 Model with Variable Kernel Convolution
(1. Electronic Information Engineering College, Anhui Technical College of Water Resources and Hydroelectric Power, Hefei 231603, China; 2. Artificial Intelligence Laboratory, Hefei Yunzhen Information Technology Co., Ltd., Hefei 230088, China; 3. Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230012, China; 4. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China)
[1] 毛冬雪,齐景馨,俞睿,等. 舌下络脉形成的机理探析及临床意义[J]. 辽宁中医杂志, 2019,46(10):2089-2091.
[2] 张晓晓,刘水清,沈洋,等. 舌下络脉在恶性肿瘤诊断中的应用研究[J]. 中医药通报, 2021,20(6):26-29.
[3] 金金. 肺癌患者舌下络脉特征及与血清VEGF的相关性研究[D]. 北京:中国中医科学院, 2021.
[4] 张淼,黄蓉,彭强,等. 舌下络脉与糖尿病和高血压病关系的临床观察[J]. 天津中医药, 2022,39(12):1513-1518.
[5] 段文华,金金,于鑫,等. 肺癌患者舌下络脉积分与血清VEGF水平的相关性研究[J]. 中国中医基础医学杂志, 2022,28(10):1647-1652.
[6] 王瑜,李军,陈杰,等. 舌下络脉与中老年糖脂代谢的关系[J]. 中华中医药杂志, 2023,38(2):871-875.
[7] 王亚楠,袁莉,汪莉,等. 慢性萎缩性胃炎中医证型与舌下络脉特征相关性分析[J]. 中国中医药信息杂志, 2023,30(5):158-163.
[8] 王立娟,钱鹏,徐鸽,等. 不同恶性肿瘤患者舌下络脉特征的临床观察分析[J]. 中国中医药科技, 2024,31(1):1-5.
[9] 闫子飞,于淼,王宽全,等. 近红外舌下图像的舌下静脉分割方法[J]. 计算机辅助设计与图形学学报, 2008(12):1569-1574.
[10] 闫子飞. 面向中医舌诊的舌下静脉特征获取与分析[D]. 哈尔滨:哈尔滨工业大学, 2011.
[11] 张纬博,王博亮,谢杰镇. 舌下络脉诊断中舌背区域自动撷取算法的研究[J]. 中国数字医学, 2011,6(9):99-101.
[12] 李伟. 舌下静脉血管分割及其病理特征分析研究[D]. 哈尔滨:哈尔滨工业大学, 2016.
[13] YANG T X, YOSHIMURA Y, MORITA A, et al. Synergistic attention U-Net for sublingual vein segmentation[J]. Artificial Life and Robotics, 2019,24(1):550-559.
[14] 王立娟,钱鹏,李福凤. 中医舌下络脉诊判读方法分析[J]. 中医文献杂志, 2023,41(6):35-38.
[15] 王立娟,钱鹏,杨帅,等. 舌下络脉的客观识别与颜色分类研究[J]. 中国中医药信息杂志, 2024,31(1):147-151.
[16] DU G T, CAO X, LIANG J M, et al. Medical image segmentation based on U-Net: A review[J]. Journal of Imaging Science and Technology, 2020,64(2). DOI:10.2352/J.ImagingSci.Technol.2020.64.2.020508.
[17] SHI H L, JIANG X L, ZHOU C, et al. DAAM-Net: A dual-encoder U-Net network with adjacent auxiliary module for pituitary tumor and jaw cyst segmentation[J].Biomedical Signal Processing and Control, 2025,99. DOI: 10.1016/j.bspc.2024.106908.
[18] DONG W H, DU B, XU Y C. Shape-intensity-guided U-net for medical image segmentation[J]. Neurocomputing, 2024,610. DOI: 10.1016/j.neucom.2024.128534.
[19] WANG Z, XIAO P S, TAN H. Spinal magnetic resonance image segmentation based on U-Net[J]. Journal of Radiation Research and Applied Sciences, 2023,16(3). DOI:10.1016/j.jrras.2023.100627.
[20] SAMI A, MD A H R, MOHAIMENUL A K R, et al. Reimagining otitis media diagnosis:A fusion of nested U-Net segmentation with graph theory-inspired feature set[J]. Array, 2024,23. DOI: 10.1016/j.array.2024.100362.
[21] XU Y, HOU S K, WANG X Y, et al. A medical image segmentation method based on improved UNet 3+ network[J]. Diagnostics, 2023,13(3). DOI: 10.3390/diagnostics13030576.
[22] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2015:234-241.
[23] ZHOU Z, SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]// International Workshop on Deep Learning in Medical Image Analysis. Springer, 2018:3-11.
[24] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net:Learning where to look for the pancreas[J]. arXiv preprint arXiv:1804.03999, 2018.
[25] CHEN J, LU Y, YU Q, et al. TransUNet:Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv:2102.04306, 2021.
[26] LIU P, SONG Y, CHAI M Y, et al. Swin-UNet++: A nested swin transformer architecture for location identification and morphology segmentation of dimples on 2.25Cr1Mo
0.25V fractured surface[J]. Materials, 2021,14(24). DOI: 10.3390/ma14247504.
[27] CLARA D, DAVID G, DAVID B, et al. 2D nnUNet for classification and segmentation of anatomical structures in fetal torso ultrasound[C]// Medical Imaging 2022: Image Processing. SPIE, 2022,12032:856-864.
[28] WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(10):3349-3364.
[29] ZHANG X, SONG Y, SONG T, et al. AKConv: Convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[J]. arXiv preprint arXiv:2311.11587, 2023.