Multimodal Tunnel Fire Detection Based on Temporal Features of Video
(1. School of Information Engineering, Chang’an University, Xi’an 710018, China; 2. School of Electronics and Control Engineering, Chang’an University, Xi’an 710018, China)
YANG Tianshun1, SONG Huansheng1, LIANG Haoxiang2, LIU Haonan1, MA Xinzhou1, SUN Shijie1, ZHANG Shaoyang1. Multimodal Tunnel Fire Detection Based on Temporal Features of Video[J]. Computer and Modernization, 2025, 0(09): 79-89.
[1] 交通运输部. 2022年交通运输行业发展统计公报[N]. 中国交通报, 2023-06-16.
[2] 曾旭阳,孙卡. 基于DI-Guy的校园消防训练仿真[J]. 计算机与现代化, 2021(8):35-39.
[3] 徐鹏,任波. 基于单高斯模型的森林火灾烟图像目标检测[J]. 计算机与现代化, 2009(2):18-20.
[4] 张永梅,杜国平,邢阔. 一种快速火灾识别方法[J]. 计算机与现代化, 2016(3):58-63.
[5] VENKATARAMANAN V, KAVITHA G, JOEL M R, et al. Forest fire detection and temperature monitoring alert using iot and machine learning algorithm[C]// 2023 5th International Conference on Smart Systems and Inventive Technology. IEEE, 2023:17-23.
[6] CHMELAR P, BENKRID A. Efficiency of HSV over RGB Gaussian mixture model for fire detection[C]// 2014 24th International Conference Radioelektronika. IEEE, 2014:1-4.
[7] WAHYONO, HARJOKO A, DHARMAWAN A, et al. Real-time forest fire detection framework based on artificial intelligence using color probability model and motion feature analysis[J]. Robotics & Machine Learning Daily News, 2022(15):61-62.
[8] YUAN C, LIU Z, ZHANG Y. Fire detection using infrared images for UAV-based forest fire surveillance[C]// 2017 International Conference on Unmanned Aircraft Systems (ICUAS). ACM, 2017:876-889.
[9] KO B C, CHEONG K H, NAM J Y. Fire detection based on vision sensor and support vector machines[J]. Fire Safety Journal, 2009,44(3):322-329.
[10] 陆雅诺,陈炳才. 融合注意力机制的无锚点森林火灾检测算法[J]. 计算机与现代化, 2021(11):61-66.
[11] 傅天驹,郑嫦娥,田野,等. 复杂背景下基于深度卷积神经网络的森林火灾识别[J]. 计算机与现代化, 2016(3):52-57.
[12] LI P L,ZHANG J W,LI W. Smoke detection method based on optical flow improvement and YOLOv3[J]. Journal of Zhejiang University of Technology, 2021,49(1):9-15.
[13] LIN J, LIN H F, WANG F. A. Semi-supervised method for real-time forest fire detection algorithm based on adaptively spatial feature fusion[J]. Forests, 2023,14(2):361-368.
[14] MUHAMMAD K, KHAN S, ELHOSENY M, et al. Efficient fire detection for uncertain surveillance environment[J]. IEEE Transactions on Industrial Informatics, 2019,15(5):3113-3122.
[15] BARMPOUTIS P, DIMITROPOULOS K, KAZA K, et al. Fire detection from images using faster R-CNN and multidimensional texture analysis[C]// 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2019:1047-1058.
[16] 王艺成,张国良,张自杰. 基于改进YOLOv5的小目标检测方法[J]. 计算机与现代化, 2023(5):100-105.
[17] SHI Y H, WANG N Y, GUO X J. YOLOV: Making still image object detectors great at video object detection[EB/OL]. (2023-05-05)[2024-02-08]. https://arxiv.org/abs/2208.09686.
[18] SHAFER G. A Mathematical Theory of Evidence[M]. England: Princeton University Press, 1976:95-113.
[19] SMETS P, KENNES R. The transferable belief model[M]// Classic Works of the Dempster-Shafer Theory of Belief Functions, Studies in Fuzziness and Soft Computing. Spring, 2008:693-736.
[20] GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO Series in 2021[EB/OL]. (2021-08-06)[2024-02-10]. https://arxiv.org/abs/2107.08430.
[21] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2020:1571-1580.
[22] KIM S W, KOOK H K, SUN J Y, et al. Parallel feature pyramid network for object detection[C]// Computer Vision-ECCV 2018, Lecture Notes in Computer Science. Springer, 2018:239-256.
[23] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018:8759-8768.
[24] TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019:9626-9639.
[25] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022,506:146-157.
[26] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014 :580-587.
[27] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[28] DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. ACM, 2016:379-387.
[29] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. IEEE, 2020:386-397.
[30] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2023-08-02)[2024-1-19]. https://arxiv.org/abs/1706.03762.
[31] HU H, GU J Y, ZHANG Z, et al. Relation networks for object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:1156-1164.
[32] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020.
[33] RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: A database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008,77:157-173.
[34] LI S B, YAN Q D, LIU P. An efficient fire detection method based on multiscale feature extraction, implicit deep supervision and channel attention mechanism[J]. IEEE Transactions on Image Processing, 2020,29:8467-8475.
[35] MAJID S, ALENEZI F, MASOOD S, et al. Attention based CNN model for fire detection and localization in real-world images[J]. Expert Systems with Applications, 2022,189. DOI: 10.1016/j.eswa.2021.116114.
[36] LI P, ZHAO W D. Image fire detection algorithms based on convolutional neural networks[J]. Case Studies in Thermal Engineering, 2020,19. DOI: 10.1016/j.csite.2020.100625.
[37] KIM B, LEE J. A Bayesian network-based information fusion combined with DNNs for robust video fire detection[J]. Applied Sciences, 2021,11(16). DOI: 10.3390/app
11167624.
[38] ABDEL-ZAHER M, HISHAM M, YOUSRI R, et al. Light-weight convolutional neural network for fire detection[C]// 2021 IEEE International Conference on Electronic Engineering. IEEE, 2021:1-5.