5G Terminal Signaling Outlier Detection Algorithm Based on Joint Distance and Density
(1. State Grid Electric Power Research Institute/NARI Information & Communication Technology Co., Ltd., Nanjing 210003, China; 2. State Grid Corporation of China, Beijing 100031, China; 3. State Grid Shandong Electric Power Research Institute, Ji’nan 250003, China)
WEI Xiaogang1, MEI Wenming2, HU Youjun1, TU Zhengwei1, WANG Rui3 . 5G Terminal Signaling Outlier Detection Algorithm Based on Joint Distance and Density[J]. Computer and Modernization, 2025, 0(08): 115-118.
[1] 赵国锋,陈婧,韩远兵,等. 5G移动通信网络关键技术综述[J]. 重庆邮电大学学报(自然科学版), 2015,27(4): 441-452.
[2] CHETTRI L, BERA R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems[J]. IEEE Internet of Things Journal, 2020,7(1):16-32.
[3] AHMAD I, SHAHABUDDIN S, KUMAR T, et al. Security for 5G and beyond[J]. IEEE Communications Surveys & Tutorials, 2019,21(4):3682-3722.
[4] 段浴,曹龙汉,张治中,等. 5G终端模拟器中信令分析技术的研究与实现[J]. 计算机工程与应用, 2020,56(15):106-112.
[5] 卓雪虹,任璐圆. 一种基于信令大数据分析的网络故障发现方法[J]. 通讯世界, 2020,27(3):46-47.
[6] 段浴. 5G终端模拟器RRC信令分析技术的研究与实现[D]. 重庆:重庆邮电大学, 2020.
[7] HAN J W, KAMBER M. 数据挖掘:概念与技术(第三版)[M]. 范明,孟小峰,译. 北京:机械工业出版社, 2012:186-188.
[8] ALGHUSHAIRY O, ALSINI R, SOULE T, et al. A review of local outlier factor algorithms for outlier detection in big data streams[J]. Big Data and Cognitive Computing, 2021,5(1). DOI: 10.3390/bdcc5010001.
[9] 刘财辉,刘地金. 离群点检测的邻近性方法综述[J]. 计算机工程与应用, 2022,58(21):1-12.
[10] LI Z, ZHAO Y, HU X Y, et al. ECOD: Unsupervised outlier detection using empirical cumulative distribution functions[J]. IEEE Transactions on Knowledge and Data Engineering, 2023,35(12):12181-12193.
[11] ACERNESE A, SARDA K, NOLÈ V, et al. Robust statistics-based anomaly detection in a steel industry[C]// 2021 29th Mediterranean Conference on Control and Automation (MED). IEEE, 2021:1058-1063.
[12] MANN S K, CHAWLA S. A proposed hybrid clustering algorithm using K-means and BIRCH for cluster based cab recommender system (CBCRS)[J]. International Journal of Information Technology, 2023,15(1):219-227.
[13] PU G, WANG L J, SHEN J, et al. A hybrid unsupervised clustering-based anomaly detection method[J]. Tsinghua Science and Technology, 2021,26(2):146-153.
[14] HEINRICH M, GÖLZ A, ARUL T, et al. Rule-based anomaly detection for railway signalling networks[J]. International Journal of Critical Infrastructure Protection, 2023,42. DOI: 10.1016/j.ijcip.2023.100603.
[15] SFAR H, BOUZEGHOUB A, RADDAOUI B. Early anomaly detection in smart home: A causal association rule-based approach[J]. Artificial Intelligence in Medicine, 2018,91:57-71.
[16] WANG H Z, BAH M J, HAMMAD M. Progress in outlier detection techniques: A survey[J]. IEEE Access, 2019,7:107964-108000.
[17] Chen X L, Li B J, Proietti R, et al. Self-taught anomaly detection with hybrid unsupervised/supervised machine learning in optical networks[J]. Journal of Lightwave Technology, 2019,37(7):1742-1749.
[18] DEMŠAR J. Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006,7:1-30.
[19] 夏勇. 聚类分析和离群点识别技术研究及其应用[D]. 哈尔滨:哈尔滨工程大学, 2010.
[20] 杨福萍,王洪国,董树霞,等. 基于聚类划分的两阶段离群点检测算法[J]. 计算机应用研究, 2013,30(7):1942-1945.
[21] 陈蓉,李艳萍. 一种基于离群点的聚类迭代检测算法[J]. 科学技术与工程, 2012,12(35):9725-9729.
[22] 郭一阳,于炯,杜旭升,等. 基于随机投影与集成学习的离群点检测算法[J]. 计算机应用研究, 2022,39(9):2608-2614.
[23] 罗晓媛,赵丽艳,刘君,等. 神经网络技术下多尺度时序数据离群点挖掘[J]. 计算机仿真, 2021,38(1):231-235.
[24] 姚鹏. 基于多视角聚类的离群检测算法研究[D]. 重庆:重庆大学, 2016.
[25] 祝一帆,安云哲,夏秀峰. 数据流环境下基于距离的离群点检测算法[J]. 计算机系统应用, 2023,32(1):214-223.
[26] 刘亚梅,闫仁武. 一种基于密度聚类的分布式离群点检测算法[J]. 计算机与数字工程, 2019,47(6):1320-1325.
[27] 涂晓敏. 基于密度的局部离群点检测算法的改进[D]. 沈阳:沈阳工业大学, 2019.