Cross-domain Book Recommendation Method Based on Heterogeneous Information Network
(1. School of Electronic Information Engineering, Nantong Vocational University, Nantong 226007, China; 2. School of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia; 3. Department of Computer Software Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; 4. School of Mechanical Engineering, Southeast University, Nanjing 210096, China)
SHI Fengyuan1, 2, MAO Yi3, JIAO Lei4. Cross-domain Book Recommendation Method Based on Heterogeneous Information Network[J]. Computer and Modernization, 2025, 0(08): 24-30.
[1] 潘文佳,费立美. 基于用户画像的图书推荐算法实证研究[J]. 四川图书馆学报, 2024(1):35-39.
[2] 王丽兰. 基于Apriori算法的高职院校图书精准推荐系统[J]. 河北软件职业技术学院学报, 2023,25(3):6-9.
[3] 柴源. 基于Word2vec的图书馆图书推荐系统的实现研究[J]. 电子设计工程, 2022,30(2):7-10.
[4] 王日花. 基于时间兴趣因子的网络表示学习图书推荐模型研究[J]. 情报工程, 2023,9(1):118-127.
[5] 卫秀敏,初丽媛,宋建群,等. 高职院校学生图书馆借阅率现状及提升对策[J]. 教育科学论坛, 2023(12):76-80.
[6] 李文海,许舒人. 基于Hadoop的电子商务推荐系统的设计与实现[J]. 计算机工程与设计, 2014,35(1):130-136.
[7] SONG B, GAO J. The enhancement and application of collaborative filtering in e-Learning system[C]// 5th Internationl Conference on Advances in Swarm Intelligence (ICSI 2014). Springer, 2014:188-195.
[8] GARCIN F, ZHOU K, FALTINGS B, et al. Personalized news recommendation based on collaborative filtering[C]// 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology. IEEE, 2012:437-441.
[9] 赵峰涛. 基于协同过滤算法的高校图书书目推荐系统设计[J]. 微型电脑应用, 2022,38(12):67-69.
[10] SUN Y Z, HAN J W. Mining Heterogeneous Information Networks: Principles and Methodologies[M]. Morgan & Claypool Publishers, 2012.
[11] SPECIALE A, VALLERO G, VASSIO L, et al. Recommendation systems in libraries: An application with heterogeneous data sources[J]. arXiv preprint arXiv:2303.11746,
2023.
[12] TAI C Y, WU M R, CHU Y W, et al. MVIN: Learning multiview items for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20). ACM, 2020:99-108.
[13] BERKOVSKY S, KUFLIK T, RICCI F. Cross-domain mediation in collaborative filtering[C]// 11th International Conference on User Modeling. Springer, 2007:355-359.
[14] HU G N, ZHANG Y, YANG Q. MTNet: A neural approach for cross-domain recommendation with unstructured text[C]// Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2018.
[15] LI P, TUZHILIN A. DDTCDR: Deep dual transfer cross domain recommendation[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. ACM, 2020:331-339.
[16] SUN C Q, GU J W, HU B B, et al. REMIT: Reinforced multi-interest transfer for cross-domain recommendation[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. AAAI, 2023,37(8). DOI:10.1609/aaai.v37i8.26181.
[17] SU C, HU Z C, XIE X Z. Cross-domain recommendation based on heterogeneous information network with adversarial learning[C]// Proceedings of the 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. ACM, 2021:65-70.
[18] ZHU F, WANG Y, CHEN C C, et al. Cross-domain recommendation: Challenges, progress, and prospects[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. AAAI, 2021:4721-4728.
[19] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. AAAI, 2015,29(1):2181-2187.
[20] SEDHAIN S, MENON A K, SANNER S, et al. AutoRec: Autoencoders meet collaborative filtering[C]// Proceedings of the 24th International Conference on World Wide Web. ACM, 2015:111-112.
[21] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]// Proceedings of the 32nd International Conference on Machine Learning. PMLR, 2015:1180-1189.
[22] 李瑞征,赵加坤. 一种融合知识图注意神经网络的推荐算法[J]. 计算机应用与软件, 2024,41(3):276-282.
[23] YUAN F, YAO L N, BENATALLAH B. DARec: Deep domain adaptation for cross-domain recommendation via transferring rating patterns[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. AAAI, 2019:4227-4233.
[24] 张卫国,袁炜轩,周熙然. 融合深度去噪自编码器和注意力机制的推荐算法[J]. 计算机应用与软件, 2023,40(8):283-290.