LAI Zhiyong, WANG Tinghua, ZHANG Xin. Feature Weighted Support Vector Machine Based on HSIC Lasso[J]. Computer and Modernization, 2025, 0(07): 119-126.
[1] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000,26(1):32-42.
[2] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2):121-167.
[3] VAPNIK N V. The Nature of Statistical Learning Theory[M]. Springer Science & Business Media, 1999.
[4] CHAABANE S B, HIJJI M, HARRABI R, et al. Face recognition based on statistical features and SVM classifier[J]. Multimedia Tools and Applications, 2022,81(6):8767-8784.
[5] CABA J, BARBA J, RINCON F, et al. Hyperspectral face recognition with adaptive and parallel SVMs in partially hidden face scenarios[J]. Sensors, 2022,22(19):7641.
[6] LIU X, WANG S, LU S Y, et al. Adapting feature selection algorithms for the classification of Chinese texts[J]. Systems, 2023,11(9):483.
[7] HAO S L, ZHANG P, LIU S, et al. Sentiment recognition and analysis method of official document text based on BERT-SVM model[J]. Neural Computing and Applications, 2023,35:24621-24632.
[8] RAHMAN M A, HASAN S T, KADER M A. Computer vision based industrial and forest fire detection using support vector machine[C]// Proceedings of the 2022 International Conference on Innovations in Science, Engineering and Technology. IEEE, 2022:233-238.
[9] SINGH A, BANSAL A, CHAUHAN N, et al. Image generation using GAN and its classification using SVM and CNN[C]// Proceedings of Emerging Trends and Technologies on Intelligent Systems. Springer, 2022:89-100.
[10] ZHANG Z H, WANG S H, ZHU Z W, et al. Identification of potential feature genes in non-alcoholic fatty liver disease using bioinformatics analysis and machine learning strategies[J]. Computers in Biology and Medicine, 2023,157:106724.
[11] KAUR A, CHIRE A, WANJALE K, et al. Recognition of protein network for bioinformatics knowledge analysis using support vector machine[J]. BioMed Research International, 2022,2022:2273648.
[12] NINO-ADAN I, MAANJARRES D, LANDA-TORRES I, et al. Feature weighting methods: A review[J]. Expert Systems with Applications, 2021,184:115424.
[13] WANG X Z, HE Q. Enhancing generalization capability of SVM classifiers with feature weight adjustment[C]// Proceedings of the 8th International Conference on Knowledge-
based Intelligent Information and Engineering Systems. Springer, 2004:1037-1043.
[14] 汪廷华,田盛丰,黄厚宽. 特征加权支持向量机[J]. 电子与信息学报, 2009,31(3):514-518.
[15] WANG F, XU Z F, ZHANG W W, et al. Motor imagery classification using geodesic filtering common spatial pattern and filter-bank feature weighted support vector machine[J]. Review of Scientific Instruments, 2020,91(3):034106.
[16] HUANG C X, ZHOU J S, CHEN J L, et al. A feature weighted support vector machine and artificial neural network algorithm for academic course performance prediction[J]. Neural Computing and Applications, 2023,35:11517-11529.
[17] WORDEN K, TSIALIAMANIS G, CROSS E J, et al. Artificial neural networks[M]// Machine Learning in Modeling and Simulation: Methods and Applications. Cham: Springer International Publishing, 2023:85-119.
[18] 戴小路,汪廷华,周慧颖. 基于加权马氏距离的模糊多核支持向量机[J].计算机科学, 2022,49(增2):302-306
[19] ALIMI O A, OUAHADA K, ABU-MAHFOUZ A M, et al. Power system events classification using genetic algorithm-based feature weighting technique for support vector machine[J]. Heliyon, 2021,7(1): e05936.
[20] MANICKAM M, SIVA R, PRABAKERAN S, et al. Pulmonary disease diagnosis using African vulture optimized weighted support vector machine approach[J]. International Journal of Imaging Systems and Technology, 2022,32(3):843-856.
[21] 胡振威,汪廷华,周慧颖. 基于核统计独立性准则的特征选择研究综述[J]. 计算机工程与应用, 2022,58(22): 54-64.
[22] WANG T H, DAI X L, LIU Y Z. Learning with Hilbert-Schmidt independence criterion: A review and new perspectives[J]. Knowledge-Based Systems, 2021,234:107567.
[23] WANG T H, HU Z W, LIU H M. A unified view of feature selection based on Hilbert-Schmidt independence criterion[J]. Chemometrics and Intelligent Laboratory Systems, 2023,236:104807.
[24] GRETTON A, FUKUMIZU K, TEO C, et al. A kernel statistical test of independence[C]// Proceedings of the 21st International Conference on Neural Information Processing Systems. NIPS, 2007:585-592.
[25] GRETTON A, BOUSQUET O, SMOLA A, et al. Measuring statistical dependence with Hilbert-Schmidt norms [C]// Proceedings of the 16th International Conference on Algorithmic Learning Theory. Springer, 2005:63-77.
[26] YAMADA M, JITKRITTUM W, SIGAL L, et al. High-dimensional feature selection by feature-wise kernelized Lasso[J]. Neural Computation, 2014,26(1):185-207.
[27] WANG X Z, WANG Y D, WANG L J. Improving fuzzy c-means clustering based on feature-weight learning[J]. Pattern Recognition Letters, 2004,25(10):1123-1132.
[28] KELLY, M, LONGJOHN R, NOTTINGHAM K. The UCI Machine Learning Repository [DB/OL]. [2024-03-10]. https://archive.ics.uci.edu.
[29] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in Python[J]. Journal of Machine Learning Research, 2011,12:2825-2830.